Skip to main content

Exploring Cross-Modal Inconsistency in Entities and Emotions for Multimodal Fake News Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14425))

Included in the following conference series:

  • 1774 Accesses

Abstract

The automatic detection of multimodal fake news has attracted significant attention recently. Numerous existing methods focus on the fusion of unimodal features to generate multimodal news representations. However, it is possible that these methods have not successfully acquired aligned modal information with sufficient accuracy and failed to effectively leverage the entity inconsistency present across modalities. Besides, there has been a lack of exploration regarding the emotional inconsistency across modalities. To address that, we propose CINEMA, a novel framework to explore cross-modal inconsistency in entities and emotions for multimodal fake news detection. We leverage the cross-modal contrastive learning objective to establish the alignment between the image and text modalities. An entity consistency learning module is developed to learn the cross-modality entity correlations. An emotional consistency learning module is implemented to effectively capture the emotional information within each modality. Finally, we evaluate the performance of CINEMA and conduct a comparative study using two extensively used datasets, Twitter and Weibo. The experimental results unequivocally demonstrate that our proposed CINEMA framework surpasses previous approaches by a substantial margin, establishing new state-of-the-art results on both datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boididou, C., Papadopoulos, S., Zampoglou, M., Apostolidis, L., Papadopoulou, O., Kompatsiaris, Y.: Detection and visualization of misleading content on twitter. Int. J. Multimed. Inf. Retr. 7(1), 71–86 (2018)

    Article  Google Scholar 

  2. Chen, Y., et al.: Cross-modal ambiguity learning for multimodal fake news detection. In: Proceedings of the ACM Web Conference 2022, pp. 2897–2905 (2022)

    Google Scholar 

  3. Del Vicario, M., et al.: The spreading of misinformation online. Proc. Natl. Acad. Sci. 113(3), 554–559 (2016)

    Article  Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Jin, Z., Cao, J., Guo, H., Zhang, Y., Luo, J.: Multimodal fusion with recurrent neural networks for rumor detection on microblogs. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 795–816 (2017)

    Google Scholar 

  7. Jin, Z., Cao, J., Zhang, Y., Zhou, J., Tian, Q.: Novel visual and statistical image features for microblogs news verification. IEEE Trans. Multimedia 19(3), 598–608 (2016)

    Article  Google Scholar 

  8. Khattar, D., Goud, J.S., Gupta, M., Varma, V.: MVAE: multimodal variational autoencoder for fake news detection. In: The World Wide Web Conference, pp. 2915–2921 (2019)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning, pp. 12888–12900. PMLR (2022)

    Google Scholar 

  11. Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H.: Align before fuse: vision and language representation learning with momentum distillation. Adv. Neural. Inf. Process. Syst. 34, 9694–9705 (2021)

    Google Scholar 

  12. Liu, X., Nourbakhsh, A., Li, Q., Fang, R., Shah, S.: Real-time rumor debunking on twitter. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1867–1870 (2015)

    Google Scholar 

  13. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  14. Qi, P., Cao, J., Yang, T., Guo, J., Li, J.: Exploiting multi-domain visual information for fake news detection. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 518–527. IEEE (2019)

    Google Scholar 

  15. Qian, S., Wang, J., Hu, J., Fang, Q., Xu, C.: Hierarchical multi-modal contextual attention network for fake news detection. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 153–162 (2021)

    Google Scholar 

  16. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  17. Singhal, S., Pandey, T., Mrig, S., Shah, R.R., Kumaraguru, P.: Leveraging intra and inter modality relationship for multimodal fake news detection. In: Companion Proceedings of the Web Conference 2022, pp. 726–734 (2022)

    Google Scholar 

  18. Wang, L., Zhang, C., Xu, H., Xu, Y., Xu, X., Wang, S.: Cross-modal contrastive learning for multimodal fake news detection. arXiv preprint arXiv:2302.14057 (2023)

  19. Wang, Y., et al.: EANN: event adversarial neural networks for multi-modal fake news detection. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 849–857 (2018)

    Google Scholar 

  20. Wu, L., Rao, Y.: Adaptive interaction fusion networks for fake news detection. arXiv preprint arXiv:2004.10009 (2020)

  21. Wu, Y., Zhan, P., Zhang, Y., Wang, L., Xu, Z.: Multimodal fusion with co-attention networks for fake news detection. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 2560–2569 (2021)

    Google Scholar 

  22. Xue, J., Wang, Y., Tian, Y., Li, Y., Shi, L., Wei, L.: Detecting fake news by exploring the consistency of multimodal data. Inf. Process. Manag. 58(5), 102610 (2021)

    Article  Google Scholar 

  23. Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T., et al.: A convolutional approach for misinformation identification. In: IJCAI, pp. 3901–3907 (2017)

    Google Scholar 

  24. Zhang, H., Fang, Q., Qian, S., Xu, C.: Multi-modal knowledge-aware event memory network for social media rumor detection. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1942–1951 (2019)

    Google Scholar 

  25. Zhang, X., Cao, J., Li, X., Sheng, Q., Zhong, L., Shu, K.: Mining dual emotion for fake news detection. In: Proceedings of the Web Conference 2021, pp. 3465–3476 (2021)

    Google Scholar 

  26. Zhou, X., Wu, J., Zafarani, R.: \(\sf SAFE\): similarity-aware multi-modal fake news detection. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12085, pp. 354–367. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47436-2_27

    Chapter  Google Scholar 

  27. Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., Procter, R.: Detection and resolution of rumours in social media: a survey. ACM Comput. Surv. (CSUR) 51(2), 1–36 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development of China (No. 2021YFB3100600), and Strategic Priority Research Program of Chinese Academy of Sciences (No. XDC02040400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Zhang, C., Xu, H., Xu, Y., Wang, S. (2024). Exploring Cross-Modal Inconsistency in Entities and Emotions for Multimodal Fake News Detection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14425. Springer, Singapore. https://doi.org/10.1007/978-981-99-8429-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8429-9_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8428-2

  • Online ISBN: 978-981-99-8429-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics