Skip to main content

Location Attention Knowledge Embedding Model for Image-Text Matching

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

Image-text matching is the core algorithm of cross-modal retrieval, which plays a central role in connecting vision and text. Due to the well-known semantic gap between visual and textual modalities, yet image-text matching is a vital challenging task. In order to reduce the huge semantic difference between images and texts, existing methods use the consensus knowledge for image-text matching tasks. However, the consensus knowledge is only extracted based on the co-occurrence frequency of words in sentences in the corpus, and does not consider the semantic information contained in the image, resulting in a decline in semantic matching performance. To solve this issue, we propose a Location Attention Knowledge Embedding (LAKE) model to improve the consensus knowledge utilization by inferring the location of objects in an image. Specifically, our model consists of three parts: Firstly, we design a location feature extraction (LFE) module, which divides the image into blocks, uses the location attention to generate valuable location features, and then splices the location features with the extracted regional image features to obtain the image features containing location information. At the same time, text features are extracted using the BERT model. Secondly, we use a knowledge representation module to extract the consensus knowledge features. Finally, the similarity between the image and the text is calculated based on the knowledge fusion feature to complete the matching process. Quantitative and qualitative results on public datasets Flickr30k and MSCOCO demonstrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, C., Mao, Z., Zhang, T., et al.: Graph structured network for image-text matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10921ā€“10930 (2020)

    Google Scholar 

  2. Gu, J., Zhao, H., Lin, Z., et al.: Scene graph generation with external knowledge and image reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1969ā€“1978 (2019)

    Google Scholar 

  3. Shi, B., Ji, L., Lu, P., et al.: Knowledge aware semantic concept expansion for image-text matching. In: Proceedings of the International Joint Conference on Artificial Intelligence (2019)

    Google Scholar 

  4. Wang, H., Zhang, Y., Ji, Z., Pang, Y., Ma, L.: Consensus-aware visual-semantic embedding for image-text matching. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 18ā€“34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_2

    Chapter  Google Scholar 

  5. Zhang, L., Li, M., Yan, K., et al.: Hierarchical knowledge-based graph embedding model for image-text matching in IoTs. IEEE Internet of Things J. 9(12), 9399ā€“9409 (2021)

    Google Scholar 

  6. Faghri, F., Fleet, D.J., Kiros, J.R., Fidler, S.: VSE++: improving visual-semantic embeddings with hard negatives. arXiv preprint arXiv:1707.05612 (2017)

  7. Lee, K.-H., Chen, X., Hua, G., Hu, H., He, X.: Stacked cross attention for image-text matching. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 212ā€“228. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_13

    Chapter  Google Scholar 

  8. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91ā€“99 (2015)

    Google Scholar 

  9. Anderson, P., He, X., Buehler, C., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6077ā€“6086 (2018)

    Google Scholar 

  10. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, p. 30 (2017)

    Google Scholar 

  11. Devlin, J., Chang, K., Lee, K., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  12. Huang, Y., Wu, Q., Song, C., et al.: Learning semantic concepts and order for image and sentence matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6163ā€“6171 (2018)

    Google Scholar 

  13. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532ā€“1543 (2014)

    Google Scholar 

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  15. Plummer, B., Wang, L., Cervantes, C., et al.: Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2641ā€“2649 (2015)

    Google Scholar 

  16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740ā€“755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Li, K., Zhang, Y., Li, K., et al.: Visual semantic reasoning for image-text matching. In: Proceedings of the IEEE/CVF International conference on computer vision, pp. 4654ā€“4662 (2019)

    Google Scholar 

  18. Wang, Y., Yang, H., Bai, X., et al.: PFAN++: bi-directional image-text retrieval with position focused attention network. IEEE Trans. Multimedia 23, 3362ā€“3376 (2020)

    Google Scholar 

  19. Chen, H., Ding, G., Liu, X., et al.: IMRAM: iterative matching with recurrent attention memory for cross-modal image-text retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12655ā€“12663 (2020)

    Google Scholar 

  20. Wei, X., Zhang, T., Li, Y., et al.: Multi-modality cross attention network for image and sentence matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10941ā€“10950 (2020)

    Google Scholar 

  21. Ge, X., Chen, F., Jose, J.M., et al.: Structured multi-modal feature embedding and alignment for image-sentence retrieval. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 5185ā€“5193 (2021)

    Google Scholar 

  22. Ji, Z., Chen, K., Wang, H.: Step-wise hierarchical alignment network for image-text matching. arXiv preprint arXiv:2106.06509 (2021)

  23. Qi, S., Yang, L., Li, C., et al.: Dual relation-aware synergistic attention network for image-text matching. In: 2022 11th International Conference on Communications, Circuits and Systems (ICCCAS), pp. 251ā€“256 (2022)

    Google Scholar 

  24. Zhao, G., Zhang, C., Shang, H., et al.: Generative label fused network for image-text matching. Knowl.-Based Syst. 263, 110280 (2023)

    Google Scholar 

Download references

Ackonwlegement

This work was supported in part by the National Natural Science Foundation of China under Grant62176084, and Grant62176083, and in part by the Fundamental Research Funds for the Central Universities of China under Grant PA2022GDSK0068 and PA2022GDSK0066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, G., Hu, M., Wang, X., Yang, J., Li, N., Zhang, Q. (2024). Location Attention Knowledge Embedding Model for Image-Text Matching. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14425. Springer, Singapore. https://doi.org/10.1007/978-981-99-8429-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8429-9_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8428-2

  • Online ISBN: 978-981-99-8429-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics