Skip to main content

Contrastive Perturbation Network for Weakly Supervised Temporal Sentence Grounding

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14425))

Included in the following conference series:

  • 1527 Accesses

Abstract

The purpose of temporal sentence grounding is to find the most relevant temporal period corresponding to the natural language query in an unmodified video. In recent years, the weak supervision paradigm, which does not require tedious annotations of starting and ending positions of the corresponding video segments, has gained significant attention due to its low annotation cost and reasonable efficiency. However, its effectiveness is seriously affected by the low-quality negative samples generated with random strategies. In this paper, we propose a Contrastive Perturbation Network (CPN), which introduces perturbation schemes into contrastive learning of weak supervised temporal sentence grounding. The perturbation involves both the proposal generation module and the reconstruction module of the CPN. In the proposal generation module, we introduce the KL divergence loss to minimize the distribution differences between the perturbed positive and real positive proposals, to force the network to be robust to the redundant information and learn fine-grained alignments between the text and video modalities. The reconstruction module leverages the perturbed features to generate a highly challenging negative proposal and strengthens the supervision to the proposal generation module by distinguishing the positive and negative proposals with the use of contrastive learning. Extensive experiments on two public benchmarks, i.e., ActivityNet Captions and Charades-STA, demonstrate that the proposed CPN could effectively improve the performance of weakly supervised temporal sentence grounding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anne Hendricks, L., Wang, O., Shechtman, E., Sivic, J., Darrell, T., Russell, B.: Localizing moments in video with natural language. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5803–5812 (2017)

    Google Scholar 

  2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  3. Chen, J., Chen, X., Ma, L., Jie, Z., Chua, T.S.: Temporally grounding natural sentence in video. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 162–171 (2018)

    Google Scholar 

  4. Chen, S., Jiang, Y.G.: Towards bridging event captioner and sentence localizer for weakly supervised dense event captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8425–8435 (2021)

    Google Scholar 

  5. Chen, Z., Ma, L., Luo, W., Tang, P., Wong, K.Y.K.: Look closer to ground better: weakly-supervised temporal grounding of sentence in video. arXiv preprint arXiv:2001.09308 (2020)

  6. Chen, Z., Ma, L., Luo, W., Wong, K.Y.K.: Weakly-supervised spatio-temporally grounding natural sentence in video. arXiv preprint arXiv:1906.02549 (2019)

  7. Collins, R.T., et al.: A system for video surveillance and monitoring. VSAM Final Report 2000(1–68), 1 (2000)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. Duan, X., Huang, W., Gan, C., Wang, J., Zhu, W., Huang, J.: Weakly supervised dense event captioning in videos. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  11. Fang, Z., Kong, S., Wang, Z., Fowlkes, C., Yang, Y.: Weak supervision and referring attention for temporal-textual association learning. arXiv preprint arXiv:2006.11747 (2020)

  12. Foroughi, H., Aski, B.S., Pourreza, H.: Intelligent video surveillance for monitoring fall detection of elderly in home environments. In: 2008 11th International Conference on Computer and Information Technology, pp. 219–224. IEEE (2008)

    Google Scholar 

  13. Gao, J., Sun, C., Yang, Z., Nevatia, R.: Tall: temporal activity localization via language query. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5267–5275 (2017)

    Google Scholar 

  14. Gao, M., Davis, L.S., Socher, R., Xiong, C.: Wslln: weakly supervised natural language localization networks. arXiv preprint arXiv:1909.00239 (2019)

  15. Heilbron, F.C., Escorcia, V., Ghanem, B., Niebles, J.C.: Activitynet: a large-scale video benchmark for human activity understanding. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 961–970. IEEE (2015)

    Google Scholar 

  16. Huang, J., Liu, Y., Gong, S., Jin, H.: Cross-sentence temporal and semantic relations in video activity localisation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7199–7208 (2021)

    Google Scholar 

  17. Krishna, R., Hata, K., Ren, F., Fei-Fei, L., Carlos Niebles, J.: Dense-captioning events in videos. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 706–715 (2017)

    Google Scholar 

  18. Lin, Z., Zhao, Z., Zhang, Z., Wang, Q., Liu, H.: Weakly-supervised video moment retrieval via semantic completion network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11539–11546 (2020)

    Google Scholar 

  19. Luo, F., Chen, S., Chen, J., Wu, Z., Jiang, Y.G.: Self-supervised learning for semi-supervised temporal language grounding. IEEE Trans. Multim. (2022)

    Google Scholar 

  20. Ma, M., Yoon, S., Kim, J., Lee, Y., Kang, S., Yoo, C.D.: VLANet: video-language alignment network for weakly-supervised video moment retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, LNCS, vol. 12373, pp. 156–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_10

  21. Mithun, N.C., Paul, S., Roy-Chowdhury, A.K.: Weakly supervised video moment retrieval from text queries. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11592–11601 (2019)

    Google Scholar 

  22. Narasimhan, M., Rohrbach, A., Darrell, T.: Clip-it! language-guided video summarization. In: Advances in Neural Information Processing Systems, pp. 13988–14000 (2021)

    Google Scholar 

  23. Otani, M., Nakashima, Y., Rahtu, E., Heikkilä, J.: Uncovering hidden challenges in query-based video moment retrieval. arXiv preprint arXiv:2009.00325 (2020)

  24. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  25. Singha, J., Roy, A., Laskar, R.H.: Dynamic hand gesture recognition using vision-based approach for human-computer interaction. Neural Comput. Appl. 29(4), 1129–1141 (2018)

    Article  Google Scholar 

  26. Song, Y., Wang, J., Ma, L., Yu, Z., Yu, J.: Weakly-supervised multi-level attentional reconstruction network for grounding textual queries in videos. arXiv preprint arXiv:2003.07048 (2020)

  27. Tan, R., Xu, H., Saenko, K., Plummer, B.A.: Logan: latent graph co-attention network for weakly-supervised video moment retrieval. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2083–2092 (2021)

    Google Scholar 

  28. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  29. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  30. Wang, H., Zha, Z.J., Chen, X., Xiong, Z., Luo, J.: Dual path interaction network for video moment localization. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 4116–4124 (2020)

    Google Scholar 

  31. Wang, H., Zha, Z.J., Li, L., Liu, D., Luo, J.: Structured multi-level interaction network for video moment localization via language query. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7026–7035 (2021)

    Google Scholar 

  32. Wang, Y., Deng, J., Zhou, W., Li, H.: Weakly supervised temporal adjacent network for language grounding. IEEE Trans. Multim. 24, 3276–3286 (2021)

    Article  Google Scholar 

  33. Wang, Z., Chen, J., Jiang, Y.G.: Visual co-occurrence alignment learning for weakly-supervised video moment retrieval. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1459–1468 (2021)

    Google Scholar 

  34. Wu, J., Li, G., Han, X., Lin, L.: Reinforcement learning for weakly supervised temporal grounding of natural language in untrimmed videos. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1283–1291 (2020)

    Google Scholar 

  35. Xu, H., He, K., Plummer, B.A., Sigal, L., Sclaroff, S., Saenko, K.: Multilevel language and vision integration for text-to-clip retrieval. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9062–9069 (2019)

    Google Scholar 

  36. Yang, W., Zhang, T., Zhang, Y., Wu, F.: Local correspondence network for weakly supervised temporal sentence grounding. IEEE Trans. Image Process. 30, 3252–3262 (2021)

    Article  Google Scholar 

  37. Zhang, D., Dai, X., Wang, X., Wang, Y.F., Davis, L.S.: Man: moment alignment network for natural language moment retrieval via iterative graph adjustment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1247–1257 (2019)

    Google Scholar 

  38. Zhang, S., Peng, H., Fu, J., Luo, J.: Learning 2d temporal adjacent networks for moment localization with natural language. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12870–12877 (2020)

    Google Scholar 

  39. Zhang, Z., Lin, Z., Zhao, Z., Zhu, J., He, X.: Regularized two-branch proposal networks for weakly-supervised moment retrieval in videos. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 4098–4106 (2020)

    Google Scholar 

  40. Zhang, Z., Zhao, Z., Lin, Z., He, X., et al.: Counterfactual contrastive learning for weakly-supervised vision-language grounding. Adv. Neural. Inf. Process. Syst. 33, 18123–18134 (2020)

    Google Scholar 

  41. Zhao, Y., Zhao, Z., Zhang, Z., Lin, Z.: Cascaded prediction network via segment tree for temporal video grounding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4197–4206 (2021)

    Google Scholar 

  42. Zheng, M., Huang, Y., Chen, Q., Liu, Y.: Weakly supervised video moment localization with contrastive negative sample mining. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 3517–3525 (2022)

    Google Scholar 

  43. Zheng, M., Huang, Y., Chen, Q., Peng, Y., Liu, Y.: Weakly supervised temporal sentence grounding with gaussian-based contrastive proposal learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15555–15564 (2022)

    Google Scholar 

  44. Zhou, H., Zhang, C., Luo, Y., Chen, Y., Hu, C.: Embracing uncertainty: decoupling and de-bias for robust temporal grounding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8445–8454 (2021)

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by the Zhejiang Province Natural Science Foundation of China (No. LQ21F020014 and No. LZ23F020007) and the National Natural Science Foundation of China (No. 62002091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, T., Lv, Y., Yu, Z., Yu, J., Fan, J., Yuan, L. (2024). Contrastive Perturbation Network for Weakly Supervised Temporal Sentence Grounding. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14425. Springer, Singapore. https://doi.org/10.1007/978-981-99-8429-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8429-9_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8428-2

  • Online ISBN: 978-981-99-8429-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics