Abstract
The purpose of temporal sentence grounding is to find the most relevant temporal period corresponding to the natural language query in an unmodified video. In recent years, the weak supervision paradigm, which does not require tedious annotations of starting and ending positions of the corresponding video segments, has gained significant attention due to its low annotation cost and reasonable efficiency. However, its effectiveness is seriously affected by the low-quality negative samples generated with random strategies. In this paper, we propose a Contrastive Perturbation Network (CPN), which introduces perturbation schemes into contrastive learning of weak supervised temporal sentence grounding. The perturbation involves both the proposal generation module and the reconstruction module of the CPN. In the proposal generation module, we introduce the KL divergence loss to minimize the distribution differences between the perturbed positive and real positive proposals, to force the network to be robust to the redundant information and learn fine-grained alignments between the text and video modalities. The reconstruction module leverages the perturbed features to generate a highly challenging negative proposal and strengthens the supervision to the proposal generation module by distinguishing the positive and negative proposals with the use of contrastive learning. Extensive experiments on two public benchmarks, i.e., ActivityNet Captions and Charades-STA, demonstrate that the proposed CPN could effectively improve the performance of weakly supervised temporal sentence grounding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anne Hendricks, L., Wang, O., Shechtman, E., Sivic, J., Darrell, T., Russell, B.: Localizing moments in video with natural language. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5803–5812 (2017)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Chen, J., Chen, X., Ma, L., Jie, Z., Chua, T.S.: Temporally grounding natural sentence in video. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 162–171 (2018)
Chen, S., Jiang, Y.G.: Towards bridging event captioner and sentence localizer for weakly supervised dense event captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8425–8435 (2021)
Chen, Z., Ma, L., Luo, W., Tang, P., Wong, K.Y.K.: Look closer to ground better: weakly-supervised temporal grounding of sentence in video. arXiv preprint arXiv:2001.09308 (2020)
Chen, Z., Ma, L., Luo, W., Wong, K.Y.K.: Weakly-supervised spatio-temporally grounding natural sentence in video. arXiv preprint arXiv:1906.02549 (2019)
Collins, R.T., et al.: A system for video surveillance and monitoring. VSAM Final Report 2000(1–68), 1 (2000)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Duan, X., Huang, W., Gan, C., Wang, J., Zhu, W., Huang, J.: Weakly supervised dense event captioning in videos. Adv. Neural Inf. Process. Syst. 31 (2018)
Fang, Z., Kong, S., Wang, Z., Fowlkes, C., Yang, Y.: Weak supervision and referring attention for temporal-textual association learning. arXiv preprint arXiv:2006.11747 (2020)
Foroughi, H., Aski, B.S., Pourreza, H.: Intelligent video surveillance for monitoring fall detection of elderly in home environments. In: 2008 11th International Conference on Computer and Information Technology, pp. 219–224. IEEE (2008)
Gao, J., Sun, C., Yang, Z., Nevatia, R.: Tall: temporal activity localization via language query. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5267–5275 (2017)
Gao, M., Davis, L.S., Socher, R., Xiong, C.: Wslln: weakly supervised natural language localization networks. arXiv preprint arXiv:1909.00239 (2019)
Heilbron, F.C., Escorcia, V., Ghanem, B., Niebles, J.C.: Activitynet: a large-scale video benchmark for human activity understanding. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 961–970. IEEE (2015)
Huang, J., Liu, Y., Gong, S., Jin, H.: Cross-sentence temporal and semantic relations in video activity localisation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7199–7208 (2021)
Krishna, R., Hata, K., Ren, F., Fei-Fei, L., Carlos Niebles, J.: Dense-captioning events in videos. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 706–715 (2017)
Lin, Z., Zhao, Z., Zhang, Z., Wang, Q., Liu, H.: Weakly-supervised video moment retrieval via semantic completion network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11539–11546 (2020)
Luo, F., Chen, S., Chen, J., Wu, Z., Jiang, Y.G.: Self-supervised learning for semi-supervised temporal language grounding. IEEE Trans. Multim. (2022)
Ma, M., Yoon, S., Kim, J., Lee, Y., Kang, S., Yoo, C.D.: VLANet: video-language alignment network for weakly-supervised video moment retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, LNCS, vol. 12373, pp. 156–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_10
Mithun, N.C., Paul, S., Roy-Chowdhury, A.K.: Weakly supervised video moment retrieval from text queries. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11592–11601 (2019)
Narasimhan, M., Rohrbach, A., Darrell, T.: Clip-it! language-guided video summarization. In: Advances in Neural Information Processing Systems, pp. 13988–14000 (2021)
Otani, M., Nakashima, Y., Rahtu, E., Heikkilä, J.: Uncovering hidden challenges in query-based video moment retrieval. arXiv preprint arXiv:2009.00325 (2020)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Singha, J., Roy, A., Laskar, R.H.: Dynamic hand gesture recognition using vision-based approach for human-computer interaction. Neural Comput. Appl. 29(4), 1129–1141 (2018)
Song, Y., Wang, J., Ma, L., Yu, Z., Yu, J.: Weakly-supervised multi-level attentional reconstruction network for grounding textual queries in videos. arXiv preprint arXiv:2003.07048 (2020)
Tan, R., Xu, H., Saenko, K., Plummer, B.A.: Logan: latent graph co-attention network for weakly-supervised video moment retrieval. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2083–2092 (2021)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Wang, H., Zha, Z.J., Chen, X., Xiong, Z., Luo, J.: Dual path interaction network for video moment localization. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 4116–4124 (2020)
Wang, H., Zha, Z.J., Li, L., Liu, D., Luo, J.: Structured multi-level interaction network for video moment localization via language query. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7026–7035 (2021)
Wang, Y., Deng, J., Zhou, W., Li, H.: Weakly supervised temporal adjacent network for language grounding. IEEE Trans. Multim. 24, 3276–3286 (2021)
Wang, Z., Chen, J., Jiang, Y.G.: Visual co-occurrence alignment learning for weakly-supervised video moment retrieval. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1459–1468 (2021)
Wu, J., Li, G., Han, X., Lin, L.: Reinforcement learning for weakly supervised temporal grounding of natural language in untrimmed videos. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1283–1291 (2020)
Xu, H., He, K., Plummer, B.A., Sigal, L., Sclaroff, S., Saenko, K.: Multilevel language and vision integration for text-to-clip retrieval. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9062–9069 (2019)
Yang, W., Zhang, T., Zhang, Y., Wu, F.: Local correspondence network for weakly supervised temporal sentence grounding. IEEE Trans. Image Process. 30, 3252–3262 (2021)
Zhang, D., Dai, X., Wang, X., Wang, Y.F., Davis, L.S.: Man: moment alignment network for natural language moment retrieval via iterative graph adjustment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1247–1257 (2019)
Zhang, S., Peng, H., Fu, J., Luo, J.: Learning 2d temporal adjacent networks for moment localization with natural language. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12870–12877 (2020)
Zhang, Z., Lin, Z., Zhao, Z., Zhu, J., He, X.: Regularized two-branch proposal networks for weakly-supervised moment retrieval in videos. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 4098–4106 (2020)
Zhang, Z., Zhao, Z., Lin, Z., He, X., et al.: Counterfactual contrastive learning for weakly-supervised vision-language grounding. Adv. Neural. Inf. Process. Syst. 33, 18123–18134 (2020)
Zhao, Y., Zhao, Z., Zhang, Z., Lin, Z.: Cascaded prediction network via segment tree for temporal video grounding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4197–4206 (2021)
Zheng, M., Huang, Y., Chen, Q., Liu, Y.: Weakly supervised video moment localization with contrastive negative sample mining. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 3517–3525 (2022)
Zheng, M., Huang, Y., Chen, Q., Peng, Y., Liu, Y.: Weakly supervised temporal sentence grounding with gaussian-based contrastive proposal learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15555–15564 (2022)
Zhou, H., Zhang, C., Luo, Y., Chen, Y., Hu, C.: Embracing uncertainty: decoupling and de-bias for robust temporal grounding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8445–8454 (2021)
Acknowledgments
This work is partly supported by the Zhejiang Province Natural Science Foundation of China (No. LQ21F020014 and No. LZ23F020007) and the National Natural Science Foundation of China (No. 62002091).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Han, T., Lv, Y., Yu, Z., Yu, J., Fan, J., Yuan, L. (2024). Contrastive Perturbation Network for Weakly Supervised Temporal Sentence Grounding. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14425. Springer, Singapore. https://doi.org/10.1007/978-981-99-8429-9_36
Download citation
DOI: https://doi.org/10.1007/978-981-99-8429-9_36
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8428-2
Online ISBN: 978-981-99-8429-9
eBook Packages: Computer ScienceComputer Science (R0)