Skip to main content

Segmenting Key Clues to Induce Human-Object Interaction Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

Two-stage HOI detectors have made great progress in training and inference, but still suffer from loss of original image features and ambiguous human-object relationships. To address the above issues, this paper proposes a network based on segmentation to extract key features to induce human-object interaction detection, which consists of two parts. First, a segmentation-based module is designed to extract fine-grained interaction features from original images, which is then refined by a feature learning encoder. Secondly, a graph-based module is proposed to encode the spatial relationships of detected human and object instances, which is to learn the interaction contexts from pair-wised human-object contexts. A transformer decoder is then utilized to equip the interaction features from the original images with the interaction contexts. The proposed method can directly learn fine-grained interaction features under the guidance of spatial relationships, achieving state-of-the-art performance on two standard benchmarks for HOI detection, HICO-DET and V-COCO.

This work was supported by the Research Foundation of Liaoning Educational Department (Grant No. LJKMZ20220400).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  2. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020)

    Article  Google Scholar 

  3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  5. Kim, B., Lee, J., Kang, J., Kim, E.-S., Kim, H.J.: HOTR: end-to-end human-object interaction detection with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 74–83 (2021)

    Google Scholar 

  6. Tamura, M., Ohashi, H., Yoshinaga, T.: QPIC: query-based pairwise human-object interaction detection with image-wide contextual information. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10410–10419 (2021)

    Google Scholar 

  7. Zou, C., et al.: End-to-end human object interaction detection with hoi transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11825–11834 (2021)

    Google Scholar 

  8. Wang, H., Yao, M., Jiang, G., Mi, Z., Fu, X.: Graph-collaborated auto-encoder hashing for multiview binary clustering. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

  9. Wang, H., Peng, J., Xianping, F.: Co-regularized multi-view sparse reconstruction embedding for dimension reduction. Neurocomputing 347, 191–199 (2019)

    Article  Google Scholar 

  10. Feng, L., Meng, X., Wang, H.: Multi-view locality low-rank embedding for dimension reduction. Knowl.-Based Syst. 191, 105172 (2020)

    Article  Google Scholar 

  11. Hou, Z., Yu, B., Qiao, Y., Peng, X., Tao, D.: Affordance transfer learning for human-object interaction detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 495–504 (2021)

    Google Scholar 

  12. Zhang, F.Z., Campbell, D., Gould, S.: Spatially conditioned graphs for detecting human-object interactions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13319–13327 (2021)

    Google Scholar 

  13. Zhang, F.Z., Campbell, D., Gould, S.: Efficient two-stage detection of human-object interactions with a novel unary-pairwise transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20104–20112 (2022)

    Google Scholar 

  14. Kim, S., Jung, D., Cho, M.: Relational context learning for human-object interaction detection, pp. 2925–2934 (2023)

    Google Scholar 

  15. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  16. Chao, Y.-W., Liu, Y., Liu, X., Zeng, H., Deng, J.: Learning to detect human-object interactions. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 381–389. IEEE (2018)

    Google Scholar 

  17. Gupta, S., Malik, J.: Visual semantic role labeling. arXiv preprint arXiv:1505.04474 (2015)

  18. Liao, Y., Liu, S., Wang, F., Chen, Y., Qian, C., Feng, J.: PPDM: parallel point detection and matching for real-time human-object interaction detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 482–490 (2020)

    Google Scholar 

  19. Hou, Z., Peng, X., Qiao, Yu., Tao, D.: Visual compositional learning for human-object interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 584–600. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_35

    Chapter  Google Scholar 

  20. Li, Y.-L., Liu, X., Xiaoqian, W., Li, Y., Cewu, L.: Hoi analysis: integrating and decomposing human-object interaction. Adv. Neural. Inf. Process. Syst. 33, 5011–5022 (2020)

    Google Scholar 

  21. Hou, Z., Yu, B., Qiao, Y., Peng, X., Tao, D.: Detecting human-object interaction via fabricated compositional learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14646–14655 (2021)

    Google Scholar 

  22. Chen, M., Liao, Y., Liu, S., Chen, Z., Wang, F., Qian, C.: Reformulating hoi detection as adaptive set prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9004–9013 (2021)

    Google Scholar 

  23. Qu, X., Ding, C., Li, X., Zhong, X., Tao, D.: Distillation using oracle queries for transformer-based human-object interaction detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022, pp. 19536–19545. IEEE (2022)

    Google Scholar 

  24. Liu, X., Li, Y.L., Wu, X., Tai, Y.W., Lu, C., Tang, C.K.: Interactiveness field in human-object interactions. arXiv e-prints (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingliang Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, M., Wang, S., Fu, B., Zhao, Z., Liu, T., Lai, L. (2024). Segmenting Key Clues to Induce Human-Object Interaction Detection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14425. Springer, Singapore. https://doi.org/10.1007/978-981-99-8429-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8429-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8428-2

  • Online ISBN: 978-981-99-8429-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics