Skip to main content

A Pixel-Level Segmentation Method for Water Surface Reflection Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14426))

Included in the following conference series:

  • 457 Accesses

Abstract

Water surface reflections pose challenges to unmanned surface vehicles or robots during target detection and tracking tasks, leading to issues such as the loss of tracked targets and false target detection. Current methods for water surface reflection detection primarily rely on image thresholding, saturation, edge detection techniques, which have poor performance in segmentation, as they are more suitable for handling simper image scenarios and are insufficient for the detection of water surface images characterized by complex background information, intricate edge details, and the inclusion of abundant contextual elements from both shores. To bridge the gap, we propose a novel model named WRS-Net for achieving pixel-wise water reflection segmentation, which leverages an encoder-decoder architecture and incorporates two novel modules, namely Multi-scale Fusion Attention Module (MSA) and Interactive Convergence Attention Module (ICA). In addition, a water surface reflection dataset for sematic segmentation is constructed. The MSA extracts detailed local reflection features from shallow networks at various resolutions. These features are subsequently fused with high-level semantic information captured by deeper networks, effectively reducing feature loss and enhancing comprehensive extraction of both shallow features and high-level semantic information. Additionally, the ICA consolidates the preservation of local reflection details while simultaneously considering the global distribution of the reflected elements, by encapsulating the outputs of the MSA, the multiple feature maps of various scales, with the outputs of the decoder. The experiment results demonstrate enhanced performance of the proposed method in contour feature extraction and effective reflection segmentation capabilities. Specifically, the proposed method achieves mIoU, mPA, and average accuracy of 94.60%, 97.70%, and 97.96%, respectively, on the water reflection semantic segmentation dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, W., Gheneti, B., Mateos, L.A., Duarte, F., Ratti, C., Rus, D.: Roboat: an autonomous surface vehicle for urban waterways. In: 2019 IE EE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6340–6347 (2019)

    Google Scholar 

  2. Wang, D.Z.: Detection of Water Reflection. Harbin Institute of Technology, Heilongjiang (2009)

    Google Scholar 

  3. Huang, P.P., Wang, J.H., Chen, C.F.: Experimental study of several water surface reflection detection methods. Micro Comput. Inform. 27(09), 199–200+198 (2011)

    Google Scholar 

  4. Zhou, X.N., Hao, J.M., Chen, Y.: A study of a gray-scale histogram-based threshold segmentation algorithm. Digital Technol. Appl. 131 (2016)

    Google Scholar 

  5. Canny, J.: A computational approach to edge detection. J. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986)

    Google Scholar 

  6. Loncaric, S.: A survey of shape analysis techniques. Pattern Recogn. 31(8), 983–1001 (1998)

    Article  Google Scholar 

  7. Basak, H., Kundu, R., Sarkar, R.: MFSNet: a multi focus segmentation network for skin lesion segmentation. Pattern Recogn. 128, 108673 (2022)

    Google Scholar 

  8. Petzold, J., Wahby, M., Stark, F., et al.: If you could see me through my eyes: predicting pedestrian perception. In: 2022 8th International Conference on Control, Automation and Robotics (ICCAR), pp. 84–190. IEEE (2022)

    Google Scholar 

  9. Zhu, W., Wang, C.Y., Tseng, K.L.: Local-adaptive face recognition via graph-based meta-clustering and regularized adaptation. In: Proceedings of the IEEE/CVF Conference on Com puter Vision and Pattern Recognition, pp. 20301–20310 (2022)

    Google Scholar 

  10. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2015)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder – decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Google Scholar 

  13. Zhao, H., Shi, J., Qi, X., et al.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  14. Chen, L.C., Papandreou, G., Kokkinos, I., et al.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)

  15. Chen, L.C., Papandreou, G., Kokkinos, I., et al.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell.. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  16. Chen, L.C., Papandreou, G., Schroff, F., et al.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  17. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  18. Yang, M., Yu, K., Zhang, C., et al.: Denseaspp for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3684–3692 (2018)

    Google Scholar 

  19. Huang, G., Liu, Z., Van Der Maaten, L., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  20. Zongwei Zhou, Md., Siddiquee, M.R., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., João Manuel, R.S., Tavares, A.B., Papa, J.P., Belagiannis, V., Nascimento, J.C., Zhi, Lu., Conjeti, S., Moradi, M., Greenspan, H., Madabhushi, A. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  21. Ding, X., Guo, Y., Ding, G., et al.: ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1911–1920 (2019)

    Google Scholar 

  22. Wu, T., Tang, S., Zhang, R., et al.: CGNet: a light-weight context guided network for semantic segmentation. IEEE Trans. Image Process. 2020(30), 1169–1179 (2020)

    Google Scholar 

  23. Zhu, L., Ji, D., Zhu, S., et al.: Learning statistical texture for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12537–12546 (2021)

    Google Scholar 

  24. Chen, L.C., Yang, Y., Wang, J., et al.: Attention to scale: scale-aware semantic image segmentation. In: Proceedings of the IEEE (2016)

    Google Scholar 

  25. Fu, J., Liu, J., Tian, H., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  26. Zhao, H., Zhang, Yi., Liu, S., Shi, J., Loy, C.C., Lin, D., Jia, J.: PSANet: point-wise spatial attention network for scene parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018: 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part IX, pp. 270–286. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_17

    Chapter  Google Scholar 

  27. Niu, R., Sun, X., Tian, Y., et al.: Hybrid multiple attention network for semantic segmentation in aerial images. IEEE Trans. Geosci. Remote Sens. 60, 1–18 (2021)

    Google Scholar 

  28. Huang, Z., Wang, X., Huang, L., et al.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019)

    Google Scholar 

  29. Liu, Z., Lin, Y., Cao, Y., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE /CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  30. Paszke, A., Gross, S., Massa, F., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, 32 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Q., Zheng, X., Wang, J., Wang, H., Che, W. (2024). A Pixel-Level Segmentation Method for Water Surface Reflection Detection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14426. Springer, Singapore. https://doi.org/10.1007/978-981-99-8432-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8432-9_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8431-2

  • Online ISBN: 978-981-99-8432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics