Skip to main content

Causal Discovery via the Subsample Based Reward and Punishment Mechanism

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

The discovery of causal relationships between variables from a large number of nonlinear observations is an important research direction in the field of data mining. Extensive studies have highlighted the challenge of constructing accurate causal networks using existing algorithms using large-scale, nonlinear, and high-dimensional data. To address the challenge of this, we propose a general method for causal discovery algorithms applicable to handling large sample data, namely the subsample based reward and punishment mechanism (SRPM) method, which can handle nonlinear large sample data more effectively. We mainly made three contributions. First, we determine the size of the sample split based on experiments to obtain better learning results. Secondly, we developed a reward and punishment mechanism where each sub-sample dynamically changes its own weight in the process of learning the network skeleton, and proposed the SRPM, a subsample method based on the reward and punishment mechanism. Finally, we combine SRPM with three different additive noise model structure learning algorithms applicable to non-Gaussian nonlinear data respectively, and demonstrate the effectiveness of the method through experiments on data generated by a variety of nonlinear function dependencies. Compared with the existing algorithms, the causal network construction algorithm based on SRPM method has a great improvement in accuracy and time performance, and the effectiveness of the method is also verified in the real power plant data.

This work was supported by the National Natural Science Foundation of China (No. 62176082 and 61902068), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515011499).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vowels, M.J., Camgoz, N.C., Bowden, R.: D’ya like dags? a survey on structure learning and causal discovery. ACM Comput. Surv. 55(4), 1–36 (2022)

    Article  Google Scholar 

  2. Shen, X., Ma, S., Vemuri, P., Simon, G.: Challenges and opportunities with causal discovery algorithms: application to alzheimer’s pathophysiology. Sci. Rep. 10(1), 2975 (2020)

    Article  Google Scholar 

  3. Zhu, J.Y., Sun, C., Li, V.O.: An extended spatio-temporal granger causality model for air quality estimation with heterogeneous urban big data. IEEE Trans. Big Data 3(3), 307–319 (2017)

    Article  Google Scholar 

  4. Assaad, C.K., Devijver, E., Gaussier, E.: Survey and evaluation of causal discovery methods for time series. J. Artifi. Intell. Res. 73, 767–819 (2022)

    Article  MathSciNet  Google Scholar 

  5. Wermuth, N., Lauritzen, S.L.: R: Graphical and Recursive Models for Contingency Tables. Eksp. Aalborg Centerboghandel (1982)

    Google Scholar 

  6. Cooper, G.F., Herskovits, E.: A bayesian method for constructing bayesian belief networks from databases. In: Uncertainty Proceedings 1991, pp. 86–94. Elsevier (1991)

    Google Scholar 

  7. Gretton, A., Herbrich, R., Smola, A,J.: The kernel mutual information. In: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings (ICASSP 2003), vol. 4, pp. IV-880. IEEE (2003)

    Google Scholar 

  8. Duggento, A., Guerrisi, M., Toschi, N.: Recurrent neural networks for reconstructing complex directed brain connectivity. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6418–6421. IEEE (2019)

    Google Scholar 

  9. Liu, F., Chan, L.-W.: Causal inference on multidimensional data using free probability theory. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 3188–3198 (2017)

    MathSciNet  Google Scholar 

  10. Zeng, Y., Hao, Z., Cai, R., Xie, F., Huang, L., Shimizu, S.: Nonlinear causal discovery for high-dimensional deterministic data. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  11. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  12. Yang, J., An, N., Alterovitz, G.: A partial correlation statistic structure learning algorithm under linear structural equation models. IEEE Trans. Knowl. Data Eng. 28(10), 2552–2565 (2016)

    Article  Google Scholar 

  13. Yang, J., Fan, G., Xie, K., Chen, Q., Wang, A.: Additive noise model structure learning based on rank correlation. Inf. Sci. 571, 499–526 (2021)

    Article  MathSciNet  Google Scholar 

  14. Yang, J., Jiang, L., Xie, K., Chen, Q., Wang, A.: Causal structure learning algorithm based on partial rank correlation under additive noise model. Appl. Artif. Intell. 36(1), 2023390 (2022)

    Article  Google Scholar 

  15. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)

    Article  Google Scholar 

  16. Teyssier, M., Koller, D.: Ordering-based search: A simple and effective algorithm for learning bayesian networks. arXiv preprint arXiv:1207.1429 (2012)

  17. Zar, J.H.: Significance testing of the spearman rank correlation coefficient. Jo. Am. Stat. Assoc. 67(339), 578–580 (1972)

    Article  Google Scholar 

  18. Friedman, N., Nachman, I., Pe’er, D.: Learning bayesian network structure from massive datasets: The" sparse candidate" algorithm. arXiv preprint arXiv:1301.6696 (2013)

  19. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing bayesian network structure learning algorithm. Mach. Learn. 65, 31–78 (2006)

    Article  Google Scholar 

  20. Schmidt, M., Niculescu-Mizil, A., Murphy, K., et al.: Learning graphical model structure using l1-regularization paths. AAAI 7, 1278–1283 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Lu, T., Kuai, F. (2024). Causal Discovery via the Subsample Based Reward and Punishment Mechanism. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14427. Springer, Singapore. https://doi.org/10.1007/978-981-99-8435-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8435-0_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8434-3

  • Online ISBN: 978-981-99-8435-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics