Skip to main content

L2T-BEV: Local Lane Topology Prediction from Onboard Surround-View Cameras in Bird’s Eye View Perspective

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14427))

Included in the following conference series:

  • 846 Accesses

Abstract

High definition maps (HDMaps) serve as the foundation for autonomous vehicles, encompassing various driving scenario elements, among which lane topology is critically important for vehicle perception and planning. Existing work on lane topology extraction predominantly relies on manual processing, while automated methods are limited to road topology extraction. Recently, road representation learning based on surround-view with bird’s-eye view (BEV) has emerged, which directly predicts localized vectorized maps around the vehicle. However, these maps cannot represent the topological relationships between lanes. As a solution, we propose a novel method, L2T-BEV, which learns local lane topology maps in BEV. This method utilizes the EfficientNet to extract features from surround-view images, followed by transforming these features into the BEV space through the Inverse Perspective Mapping (IPM). Nonetheless, the IPM transformation often suffers from distortion issues. To alleviate this, we add a learnable residual mapping function to the features after the IPM transformation. Finally, we employ a transformer network with learnable positional embedding to process the fused images, generating higher-precision lane topology. We validated our method on the NuScenes dataset, and the experimental results demonstrate the feasibility and excellent performance.

This work was supported by the Key Research and Development Program of Zhejiang Province in China (No. 2023C01237), and the Natural Science Foundation of China(No.U22A202101).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. . Wang, H., Xue, C., Zhou, Y., Wen, F., Zhang, H.: Visual semantic localization based on HD map for autonomous vehicles in urban scenarios. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, pp. 11255–11261 (2021). https://doi.org/10.1109/ICRA48506.2021.9561459

  2. Chiang, K.-W., Zeng, J.-C., Tsai, M.-L., Darweesh, H., Chen, P.-X., Wang, C.-K.: Bending the curve of HD maps production for autonomous vehicle applications in Taiwan. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 15, 8346–8359 (2022). https://doi.org/10.1109/JSTARS.2022.3204306

    Article  Google Scholar 

  3. Chiang, K.W., Wang, C.K., Hong, J.H., et al.: Verification and validation procedure for high-definition maps in Taiwan. Urban Inf. 1, 18 (2022). https://doi.org/10.1007/s44212-022-00014-0

    Article  Google Scholar 

  4. Liu, J.N., Zhan, J., Guo, C., Li, Y., Wu, H.B., Huang, H.: Data logic structure and key technologies on intelligent high-precision map. Acta Geodaetica et Cartographica Sinica 48(8), 939–953 (2019). https://doi.org/10.11947/j.AGCS.2019.20190125

  5. Maiouak, M., Taleb, T.: Dynamic maps for automated driving and UAV geofencing. IEEE Wirel. Commun. 26(4), 54–59 (2019). https://doi.org/10.1109/MWC.2019.1800544

    Article  Google Scholar 

  6. HERE. https://www.here.com/. Accessed 8 Apr 2023

  7. Kim, C., Cho, S., Sunwoo, M., Resende, P., Bradaï, B., Jo, K.: Updating point cloud layer of high definition (HD) map based on crowd-sourcing of multiple vehicles installed LiDAR. IEEE Access 9, 8028–8046 (2021). https://doi.org/10.1109/ACCESS.2021.3049482

    Article  Google Scholar 

  8. Jang, W., An, J., Lee, S., Cho, M., Sun, M., Kim, E.: Road lane semantic segmentation for high definition map. In: IEEE Intelligent Vehicles Symposium (IV). Changshu, China 2018, pp. 1001–1006 (2018). https://doi.org/10.1109/IVS.2018.8500661

  9. Can, Y.B., Liniger, A., Paudel, D.P., Van Gool, L.: Topology preserving local road network estimation from single onboard camera image. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, pp. 17242–17251 (2022). https://doi.org/10.1109/CVPR52688.2022.01675

  10. Kiran, B.R., et al.: Real-time dynamic object detection for autonomous driving using prior 3D-maps. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018). https://doi.org/10.1007/978-3-030-11021-5_35

  11. Bao, Z., Hossain, S., Lang, H., Lin, X.: High-definition map generation technologies for autonomous driving: a review (2022). arXiv preprint arXiv:2206.05400

  12. Ma, L., Li, Y., Li, J., Junior, J.M., Gonçalves, W.N., Chapman, M.A.: BoundaryNet: extraction and completion of road boundaries with deep learning using mobile laser scanning point clouds and satellite imagery. IEEE Trans. Intell. Transp. Syst. 23(6), 5638–5654 (2022). https://doi.org/10.1109/TITS.2021.3055366

    Article  Google Scholar 

  13. Xu, Z., et al.: csBoundary: city-scale road-boundary detection in aerial images for high-definition Maps. IEEE Rob. Autom. Lett. 7(2), 5063–5070 (2022). https://doi.org/10.1109/LRA.2022.3154052

    Article  MathSciNet  Google Scholar 

  14. Gao, S., Li, M., Rao, J., Mai, G., Prestby, T., Marks, J., Hu, Y.: Automatic urban road network extraction from massive GPS trajectories of taxis. In: Werner, M., Chiang, Y.-Y. (eds.) Handbook of Big Geospatial Data, pp. 261–283. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55462-0_11

    Chapter  Google Scholar 

  15. Can, Y.B., Liniger, A., Paudel, D.P., Van Gool, L.: Structured bird’s-eye-view traffic scene understanding from onboard images. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, pp. 15641–15650 (2021). https://doi.org/10.1109/ICCV48922.2021.01537

  16. Li, Q., Wang, Y., Wang, Y., Zhao, H.: HDMapNet: an online HD map construction and evaluation framework. In: International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, pp. 4628–4634 (2022). https://doi.org/10.1109/ICRA46639.2022.9812383

  17. Liu, Y.C., Wang, Y., Wang, Y.L., Zhao, H.: Vectormapnet: end-to-end vectorized hd map learning. arXiv preprint arXiv:2206.08920 (2022)

  18. Liao, B.C., et al.: MapTR: structured modeling and learning for online vectorized HD map construction. arXiv preprint arXiv:2208.14437 (2022)

  19. Deng, L., Yang, M., Li, H., Li, T., Hu, B., Wang, C.: Restricted deformable convolution-based road scene semantic segmentation using surround view cameras. IEEE Trans. Intell. Transp. Syst. 21(10), 4350–4362 (2020). https://doi.org/10.1109/TITS.2019.2939832

    Article  Google Scholar 

  20. Raisi, Z., Naiel, M.A., Younes, G., Wardell, S., Zelek, J.: 2LSPE: 2D learnable sinusoidal positional encoding using transformer for scene text recognition. In: 2021 18th Conference on Robots and Vision (CRV), Burnaby, BC, Canada, pp. 119–126 (2021). https://doi.org/10.1109/CRV52889.2021.00024

  21. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 11618–11628 (2020). https://doi.org/10.1109/CVPR42600.2020.01164

  22. Máttyus, G., Luo, W., Urtasun, R.: DeepRoadMapper: extracting road topology from aerial images. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 3458–3466 (2017). https://doi.org/10.1109/ICCV.2017.372

  23. Batra, A., Singh, S., Pang, G., Basu, S., Jawahar, C.V., Paluri, M.: Improved road connectivity by joint learning of orientation and segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 10377–10385 (2019). https://doi.org/10.1109/CVPR.2019.01063

  24. Bastani, F., et al.: RoadTracer: automatic extraction of road networks from aerial images. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 4720–4728 (2018). https://doi.org/10.1109/CVPR.2018.00496

  25. Zhang, J., Hu, X., Wei, Y., Zhang, L.: Road topology extraction from satellite imagery by joint learning of nodes and their connectivity. IEEE Trans. Geosci. Remote Sens. 61, 1–13 (2023). https://doi.org/10.1109/TGRS.2023.3241679

    Article  Google Scholar 

  26. Zhou, B., Krähenbühl, P.: Cross-view transformers for real-time map-view semantic segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, pp. 13750–13759 (2022). https://doi.org/10.1109/CVPR52688.2022.01339

  27. Hu, A., et al.: FIERY: future instance prediction in bird’s-eye view from surround monocular cameras. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, pp. 15253–15262 (2021). https://doi.org/10.1109/ICCV48922.2021.01499

  28. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks (2019). ArXiv preprint arXiv:1905.11946

  29. Xu, Z.H., Liu, Y.X., Sun, Y.X., Liu, M., Wang, L.J.: CenterLineDet: CenterLine Graph detection for road lanes with vehicle-mounted sensors by transformer for HD map generation (2023). ArXiv preprint arXiv:2209.07734

  30. Acuna, D., Ling, H., Kar, A., Fidler, S.: Efficient interactive annotation of segmentation datasets with Polygon-RNN++. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 859–868 (2018). https://doi.org/10.1109/CVPR.2018.00096

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijie Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, S., Li, T., Li, R., Pan, Z. (2024). L2T-BEV: Local Lane Topology Prediction from Onboard Surround-View Cameras in Bird’s Eye View Perspective. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14427. Springer, Singapore. https://doi.org/10.1007/978-981-99-8435-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8435-0_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8434-3

  • Online ISBN: 978-981-99-8435-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics