Skip to main content

WaRoNav: Warehouse Robot Navigation Based on Multi-view Visual-Inertial Fusion

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14427))

Included in the following conference series:

  • 420 Accesses

Abstract

An accurate and globally consistent navigation system is crucial for the efficient functioning of warehouse robots. Among various robot navigation techniques, the tightly-coupled visual-inertial fusion stands out as one of the most promising approaches, owing to its complementary sensing and impressive performance in terms of response time and accuracy. However, the current state-of-the-art visual-inertial fusion methods suffer from limitations such as long-term drifts and loss of absolute reference. To address these issues, this paper proposes a novel globally consistent multi-view visual-inertial fusion framework, called WaRoNav, for warehouse robot navigation. Specifically, the proposed method jointly exploits a downward-looking QR-vision sensor and a forward-looking visual-inertial sensor to estimate the robot poses and velocities in real-time. The downward camera provides absolute robot poses with reference to the global workshop frame. Furthermore, the long-term visual-inertial drifts, inertial biases, and velocities are periodically compensated at spatial intervals of QR codes by minimizing visual-inertial residuals with rigid constraints of absolute poses estimated from downward visual measurements. The effectiveness of the proposed method is evaluated on a developed warehouse robot navigation platform. The experimental results show competitive accuracy against state-of-the-art approaches with the maximal position error of 0.05m and maximal attitude error of 2 \({^{\circ }}\), irrespective of the trajectory lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, H., Jia, X., Liu, K., Sun, B.: Self-adaptive traffic control model with behavior trees and reinforcement learning for AGV in industry 4.0. IEEE Trans. Ind. Inf. 17(12), 7968–7979 (2021)

    Article  Google Scholar 

  2. Li, X., Wan, J., Dai, H.-N., Imran, M., Xia, M., Celesti, A.: A hybrid computing solution and resource scheduling strategy for edge computing in smart manufacturing. IEEE Trans. Ind. Inf. 15(7), 4225–4234 (2019)

    Article  Google Scholar 

  3. De Ryck, M., Versteyhe, M., Debrouwere, F.: Automated guided vehicle systems, state-of-the-art control algorithms and techniques. J. Manuf. Syst. 54, 152–173 (2020)

    Article  Google Scholar 

  4. Labbé, M., Michaud, F.: RTAB-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Rob. 36(2), 416–446 (2019)

    Article  Google Scholar 

  5. Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: an accurate open-source library for visual, visual-inertial, and multimap slam. IEEE Trans. Rob. 37(6), 1874–1890 (2021)

    Article  Google Scholar 

  6. Cao, S., Lu, X., Shen, S.: GVINS: tightly coupled GNSS-visual-inertial fusion for smooth and consistent state estimation. IEEE Trans. Rob. 38(4), 2004–2021 (2022)

    Article  Google Scholar 

  7. Lv, W., Kang, Y., Zhao, Y.-B., Wu, Y., Zheng, W.X.: A novel inertial-visual heading determination system for wheeled mobile robots. IEEE Trans. Control Syst. Technol. 29(4), 1758–1765 (2020)

    Article  Google Scholar 

  8. Eckenhoff, K., Geneva, P., Bloecker, J., Huang, G.: Multi-camera visual-inertial navigation with online intrinsic and extrinsic calibration. In; 2019 International Conference on Robotics and Automation (ICRA), pp. 3158–3164. IEEE (2019)

    Google Scholar 

  9. Xia, Y., Ma, J.: Locality-guided global-preserving optimization for robust feature matching. IEEE Trans. Image Process. 31, 5093–5108 (2022)

    Article  Google Scholar 

  10. Mur-Artal, R., Tardós, J.D.: Visual-inertial monocular slam with map reuse. IEEE Rob. Autom. Lett. 2(2), 796–803 (2017)

    Article  Google Scholar 

  11. Chou, C.C., Chou, C.F.: Efficient and accurate tightly-coupled visual-lidar slam. IEEE Trans. Intell. Transp. Syst. 23(9), 14509–14523 (2021)

    Article  Google Scholar 

  12. Qin, T., Li, P., Shen, S.: Vins-mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans. Rob. 34(4), 1004–1020 (2018)

    Article  Google Scholar 

  13. Lee, J., Chen, C., Shen, C., Lai, Y.: Landmark-based scale estimation and correction of visual inertial odometry for VTOL UAVs in a GPS-denied environment. Sensors 22(24), 9654 (2022)

    Article  Google Scholar 

  14. Karimi, M., Oelsch, M., Stengel, O., Babaians, E., Steinbach, E.: Lola-slam: low-latency lidar slam using continuous scan slicing. IEEE Rob. Autom. Lett. 6(2), 2248–2255 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (62273332) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2022201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Li, B., Liu, Y., Liang, W. (2024). WaRoNav: Warehouse Robot Navigation Based on Multi-view Visual-Inertial Fusion. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14427. Springer, Singapore. https://doi.org/10.1007/978-981-99-8435-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8435-0_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8434-3

  • Online ISBN: 978-981-99-8435-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics