Skip to main content

Network Transplanting for the Functionally Modular Architecture

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14427))

Included in the following conference series:

  • 396 Accesses

Abstract

This paper focuses on the problem of transplanting category-and-task-specific neural networks to a generic, modular network without strong supervision. Unlike traditional deep neural networks (DNNs) with black-box representations, we design a functionally modular network architecture, which divides the entire DNN into several functionally meaningful modules. Like building LEGO blocks, we can teach the proposed DNN a new object category by directly transplanting the module corresponding to the object category from another DNN, with a few or even without sample annotations. Our method incrementally adds new categories to the DNN, which do not affect representations of existing categories. Such a strategy of incremental network transplanting can avoid the typical catastrophic-forgetting problem in continual learning. We further develop a back distillation method to overcome challenges of model optimization in network transplanting. In experiments, our method with much fewer training samples outperformed baselines.

Q. Zhang and X. Cheng—Contributed equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. In NIPS

    Google Scholar 

  2. Andrychowicz, M., Denil, M., Colmenarejo, S.G., Hoffman, M.W., Pfau, D., Schaul, T., Shillingford, B., de Freitas, N.: Learning to learn by gradient descent by gradient descent. In NIPS (2016)

    Google Scholar 

  3. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: Quantifying interpretability of deep visual representations. In CVPR (2017)

    Google Scholar 

  4. Buzzega, P., Boschini, M., Porrello, A., Abati, D., Calderara, S.: Dark experience for general continual learning: a strong, simple baseline. In NIPS

    Google Scholar 

  5. Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K.: This looks like that: deep learning for interpretable image recognition. In NIPS (2019)

    Google Scholar 

  6. Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what you can: Detecting and representing objects using holistic models and body parts. In CVPR (2014)

    Google Scholar 

  7. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In NIPS (2016)

    Google Scholar 

  8. Chou, Y.M., Chan, Y.M., Lee, J.H., Chiu, C.Y., Chen, C.S.: Unifying and merging well-trained deep neural networks for inference stage. In arXiv:1805.04980 (2018)

  9. Hariharan, B., Arbelaez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In ICCV (2011)

    Google Scholar 

  10. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: \(\beta \)-vae: learning basic visual concepts with a constrained variational framework. In ICLR (2017)

    Google Scholar 

  11. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In NIPS Workshop (2014)

    Google Scholar 

  12. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural networks: A survey. IEEE transactions on pattern analysis and machine intelligence 44(9), 5149–5169 (2021)

    Google Scholar 

  13. Long, J., Shelhamer, E., Darrel, T.: Fully convolutional networks for semantic segmentation. In CVPR (2015)

    Google Scholar 

  14. Metz, L., Maheswaranathan, N., Cheung, B., Sohl-Dickstein, J.: Learning unsupervised learning rules. In ICLR (2019)

    Google Scholar 

  15. Neyshabur, B., Sedghi, H., Zhang, C.: What is being transferred in transfer learning? In NIPS

    Google Scholar 

  16. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text transformer. In JMLR

    Google Scholar 

  17. Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual adapters. In NIPS (2017)

    Google Scholar 

  18. Rebuffi, S.A., Bilen, H., Vedaldi, A.: Efficient parametrization of multi-domain deep neural networks. In CVPR (2018)

    Google Scholar 

  19. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. In arXiv:1606.04671 (2016)

  20. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In NIPS (2017)

    Google Scholar 

  21. Schwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural networks via information. In arXiv:1703.00810 (2017)

  22. Shen, W., Wei, Z., Huang, S., Zhang, B., Fan, J., Zhao, P., Zhang, Q.: Interpretable compositional convolutional neural networks. In IJCAI (2021)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In ICLR (2015)

    Google Scholar 

  24. Srinivas, S., Fleuret, F.: Knowledge transfer with jacobian matching. In ICML (2018)

    Google Scholar 

  25. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset. Tech. rep, In California Institute of Technology (2011)

    Google Scholar 

  26. Wang, Y., Su, H., Zhang, B., Hu, X.: Interpret neural networks by identifying critical data routing paths. In CVPR (2018)

    Google Scholar 

  27. Wolchover, N.: New theory cracks open the black box of deep learning. In Quanta Magazine (2017)

    Google Scholar 

  28. Xiao, J., Gu, S., Zhang, L.: Multi-domain learning for accurate and few-shot color constancy (2020)

    Google Scholar 

  29. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks. In ICLR (2018)

    Google Scholar 

  30. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In NIPS (2014)

    Google Scholar 

  31. Zhang, Q., Wu, Y.N., Zhu, S.C.: Interpretable convolutional neural networks. In CVPR (2018)

    Google Scholar 

Download references

Acknowledgment

Quanshi Zhang and Xu Cheng contribute equally to this paper. Quanshi Zhang is the corresponding author. He is with the Department of Computer Science and Engineering, the John Hopcroft Center, at the Shanghai Jiao Tong University, China. This work is partially supported by the National Nature Science Foundation of China (62276165), National Key R &D Program of China (2021ZD0111602), Shanghai Natural Science Foundation (21JC1403800,21ZR1434600), National Nature Science Foundation of China (U19B2043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanshi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Q., Cheng, X., Wang, X., Yang, Y., Wu, Y. (2024). Network Transplanting for the Functionally Modular Architecture. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14427. Springer, Singapore. https://doi.org/10.1007/978-981-99-8435-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8435-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8434-3

  • Online ISBN: 978-981-99-8435-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics