Skip to main content

Broaden Your Positives: A General Rectification Approach for Novel Class Discovery

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14428))

Included in the following conference series:

  • 341 Accesses

Abstract

Novel category discovery (NCD), which is a challenging and emerging task, aims to cluster unlabelled instances with knowledge information transferred from labelled ones. A majority of recent state-of-the-art methods leverage contrastive learning to model labelled and unlabelled data simultaneously. Nevertheless, they suffer from inaccurate and insufficient positive samples, which are detrimental to NCD and even its generalized class discovery (GCD) setting. To solve this problem, we propose positive-augmented contrastive learning (PACL), which can mine more positive samples and additional pseudo-positive samples, while augmenting the loss cost corresponding to these positive pairs. Consequently, PACL alleviates the imbalance between positive and negative pairs in contrastive learning, and facilitates the knowledge transfer for novel class discovery. In addition, we develop a general feature rectification approach based on PACL to rectify the representation learning achieved by existing NCD or GCD models. Extensive experiments on three datasets exhibit the necessity and effectiveness of our approach for both NCD and GCD tasks, without loss of generality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, B., et al.: Panoptic-deeplab: a simple, strong, and fast baseline for bottom-up panoptic segmentation. In: CVPR, pp. 12475–12485 (2020)

    Google Scholar 

  2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  3. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  4. Fei, Y., Zhao, Z., Yang, S., Zhao, B.: Xcon: learning with experts for fine-grained category discovery. In: BMVC (2022)

    Google Scholar 

  5. Fini, E., Sangineto, E., Lathuilière, S., Zhong, Z., Nabi, M., Ricci, E.: A unified objective for novel class discovery. In: ICCV, pp. 9284–9292 (2021)

    Google Scholar 

  6. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR, pp. 1735–1742 (2006)

    Google Scholar 

  7. Han, K., Rebuffi, S.A., Ehrhardt, S., Vedaldi, A., Zisserman, A.: Autonovel: Automatically discovering and learning novel visual categories. IEEE TPAMI 44(10), 6767–6781 (2021)

    Article  Google Scholar 

  8. Han, K., Vedaldi, A., Zisserman, A.: Learning to discover novel visual categories via deep transfer clustering. In: ICCV, pp. 8401–8409 (2019)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Jia, X., Han, K., Zhu, Y., Green, B.: Joint representation learning and novel category discovery on single-and multi-modal data. In: ICCV, pp. 610–619 (2021)

    Google Scholar 

  11. Kim, S., Kim, D., Cho, M., Kwak, S.: Embedding transfer with label relaxation for improved metric learning. In: CVPR, pp. 3967–3976 (2021)

    Google Scholar 

  12. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: ICCV Workshop, pp. 554–561 (2013)

    Google Scholar 

  13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  14. LI, Z., Otholt, J., Dai, B., Hu, D., Meinel, C., Yang, H.: A closer look at novel class discovery from the labeled set. In: NeurIPS (2022)

    Google Scholar 

  15. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. In: NeurIPS (2018)

    Google Scholar 

  16. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv:1807.03748 (2018)

  17. Pu, N., Zhong, Z., Sebe, N.: Dynamic conceptional contrastive learning for generalized category discovery. In: CVPR (2023)

    Google Scholar 

  18. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: ICML, pp. 1139–1147 (2013)

    Google Scholar 

  19. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: CVPR, pp. 10781–10790 (2020)

    Google Scholar 

  20. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS (2017)

    Google Scholar 

  21. Vaze, S., Han, K., Vedaldi, A., Zisserman, A.: Generalized category discovery. In: CVPR, pp. 7492–7501 (2022)

    Google Scholar 

  22. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  23. Wang, H., Zhu, Y., Adam, H., Yuille, A., Chen, L.C.: Max-deeplab: end-to-end panoptic segmentation with mask transformers. In: CVPR, pp. 5463–5474 (2021)

    Google Scholar 

  24. Wen, X., Zhao, B., Qi, X.: Parametric classification for generalized category discovery: a baseline study. arXiv:2211.11727 (2022)

  25. Yang, M., Zhu, Y., Yu, J., Wu, A., Deng, C.: Divide and conquer: compositional experts for generalized novel class discovery. In: CVPR, pp. 14268–14277 (2022)

    Google Scholar 

  26. Zhong, Z., Fini, E., Roy, S., Luo, Z., Ricci, E., Sebe, N.: Neighborhood contrastive learning for novel class discovery. In: CVPR, pp. 10867–10875 (2021)

    Google Scholar 

  27. Zhong, Z., Zhu, L., Luo, Z., Li, S., Yang, Y., Sebe, N.: Openmix: reviving known knowledge for discovering novel visual categories in an open world. In: CVPR, pp. 9462–9470 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF of China under Grant Nos. 62102061 and 62272083, and in part by the Liaoning Provincial NSF under Grant 2022-MS-137 and 2022-MS-128, and in part by the Fundamental Research Funds for the Central Universities under Grant DUT21RC(3)024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, Y., Pu, N., Jia, Q., Wang, W., Liu, Y. (2024). Broaden Your Positives: A General Rectification Approach for Novel Class Discovery. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14428. Springer, Singapore. https://doi.org/10.1007/978-981-99-8462-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8462-6_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8461-9

  • Online ISBN: 978-981-99-8462-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics