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Abstract. Class incremental learning (CIL) aims to recognize both the
old and new classes along the increment tasks. Deep neural networks
in CIL suffer from catastrophic forgetting and some approaches rely on
saving exemplars from previous tasks, known as the exemplar-based set-
ting, to alleviate this problem. On the contrary, this paper focuses on
the Exemplar-Free setting with no old class sample preserved. Balancing
the plasticity and stability in deep feature learning with only supervision
from new classes is more challenging. Most existing Exemplar-Free CIL
methods report the overall performance only and lack further analysis. In
this work, different methods are examined with complementary metrics
in greater detail. Moreover, we propose a simple CIL method, Rotation
Augmented Distillation (RAD), which achieves one of the top-tier per-
formances under the Exemplar-Free setting. Detailed analysis shows our
RAD benefits from the superior balance between plasticity and stability.
Finally, more challenging exemplar-free settings with fewer initial classes
are undertaken for further demonstrations and comparisons among the
state-of-the-art methods.

Keywords: Class Incremental Learning - Catastrophic Forgetting - Ex-
emplar Free.

1 Introduction

AT agents, e.g., deep neural networks (DNNs), deployed in the real world face
an ever-changing environment, i.e., with new concepts and categories continually
emerging [3,1,5]. Therefore, class incremental learning (CIL) [6,7,8] has attracted
much attention as it aims to equip deep models with the capacity to continu-
ously handle new categories. However, learning to discriminate sets of disjoint
classes sequentially with deep models is challenging, as they are prone to en-
tirely forgetting the previous knowledge, thus resulting in severe performance
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Fig.1: Incremental Accuracy of TinylmageNet and CIFAR100 with 10 incre-
mental steps. The top-1 accuracy (%) after learning each task is shown. Existing
SOTA methods achieve similar performance. The proposed Rotation Augmented
Distillation (RAD) achieves the SOTA performance as well. The black dot in the
upper right corner indicates the upper bound that the model trained on all the
data. The black dotted line indicates the lower bound, a simple finetune method.

degradation of old tasks. It is known as catastrophic forgetting [9]. To maintain
the old knowledge, a small number of exemplars from the previous tasks can
be stored in the memory buffer, known as the exemplar-based methods [3,6,10].
However, exemplars from previous tasks can be unavailable due to constraints,
e.g., user privacy or device limitations.

To this end, this paper focuses on exemplar-free class incremental learning
(EFCIL) setting [11,12,13,15,17]. Model distillation [16] plays an important role
in preserving past knowledge by existing methods [11,12,13,14]. Both the feature
extractor and new classifier are learned with the classification loss on the new
data and knowledge distillation from the previous model. The variations of deep
features during the new task training are penalized by distillation loss. Other
methods [15,18] learn a feature extractor in the initial task only and then fixed
it for increment tasks. New classifiers are learned on the extracted features of
new tasks while the old class statistics, e.g., prototype vectors and covariance
matrices, are also computed and preserved. The state-of-the-art (SOTA) meth-
ods [11,12,13,15] follow either the two paradigms mentioned above. As shown
in Fig. 1, these SOTA methods report similar overall performance, i.e., aver-
age incremental accuracy. However, further detailed analysis is not conducted
within these methods. In this work, we further incorporate the measures of For-
getting and Intransigence as in [34]. The performance of SOTA EFCIL meth-
ods [11,12,15] under various settings is reproduced for more detailed comparisons
and analysis.

As EFCIL is a challenging task, the existing experimental setting is with half
of the dataset in the initial task. Therefore, a model trained on such an initial task
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may be strong enough for the following incremental tasks. A baseline method,
named Feat*, is proposed for such demonstration and comparison. Specifically, a
deep feature extractor is trained with the initial data and frozen. NME classifier
is then used to discriminate different classes across incremental steps. However,
Feat* achieves the SOTA level performance under the existing setting. In this
work, we propose a simple yet effective method, Rotation Augmented Distillation
(RAD), to enable the continuous training of the entire deep model along the
increment tasks. On the one hand, the data augmentation used provides the
plasticity by introducing the varied training samples during training. On the
other hand, the knowledge distillation can achieve the stability by alleviating the
forgetting of past knowledge. To alleviate the bias of the strong initial model, a
more challenging setting with much fewer data in the initial task is introduced.
Nevertheless, our RAD still achieves one of the best results among the SOTA
methods due to its superior balance of stability and plasticity, as revealed by the
detailed analysis.
The main contributions of this work are summarized as follows:

1. We provide a more detailed analysis of the EFCIL methods, rather than the
overall results only in existing works. Specifically, the complementary met-
rics, forgetting and intransigence, are also used to evaluate SOTA methods.
Detailed comparisons and analyses are thus enabled.

2. A simple and intuitive method, Rotation Augmented Distillation (RAD), is
designed to better alleviate the plasticity-stability dilemma. Its effectiveness
is demonstrated by its superior performance under various EFCIL settings.

3. A new challenging setting is provided to alleviate the bias brought by the
strong initial model. Detailed comparisons and analyses are also conducted.

2 Related Work

Class incremental learning aims for a well-performing deep learner that can se-
quentially learn from the streaming data. Its main challenge is Catastrophic
Forgetting [9] which depicts the deep models prone to entirely forgetting the
knowledge learned from previous tasks. Different strategies have been proposed
to handle this issue. Regularization strategies such as elastic weight consolida-
tion (EWC) [19] use different metrics to identify and penalize the changes of
important parameters of the original network when learning a new task. Re-
hearsal strategies [1,8,26,27] are widely adopted as well. The model is permitted
to access data from previous tasks partially by maintaining a relatively small
memory, enabling it to directly recall the knowledge from the previous data and
mitigate forgetting. iCaRL [8] stores a subset of samples per class by selecting
the good approximations to class means in the feature space. However, access
to the exemplars of old tasks is not guaranteed and could be limited to data
security and privacy constraints [25].

The exemplar-free class incremental learning (EFCIL) [2,11,12,13,15,17,18)]
is a challenging setting, where no data sample of old tasks can be directly stored.
Existing EFCIL methods either use regularization to update the deep model for
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each incremental step [19,20] or adapt distillation to preserve past knowledge
by penalizing variations for past classes during model updates [11,12,13]. More-
over, the prototypes of old tasks can be exploited in conjunction with distillation
to improve overall performance, as shown in [11,12,13]. Specifically, PASS [12]
proposes prototype augmentation in the deep feature space to improve the dis-
crimination of classes learned in different increment tasks. A prototype selection
mechanism is proposed in SSRE [11] to better enhance the discrimination be-
tween old and new classes. Feature generation for past classes is introduced in
IL2A [13] by leveraging information about the class distribution. However, IL2A
is inefficient to scale up for a large number of classes since a covariance matrix
needs to be stored for each class. Inspired by the transfer learning scheme [28], in-
dependent shallow classifiers can be learned based on a fixed feature extractor, as
in DeeSIL [18]. A pseudo-features generator is further exploited in FeTrIL [15] to
create representations of past classes to improve classifier learning across tasks.
The proposed Rotation Augmented Distillation (RAD) method is end-to-end
trainable on the full model and simply based on a distillation strategy [16] and
rotation data augmentation [21]. Detailed comparisons show that RAD bene-
fits from the superior balance between stability and plasticity in EFCIL model
training.

3 Methodology

3.1 Preliminary

In class incremental learning, a model is learned from an initial task (0) a se-
quence of T incremental tasks, where each task ¢ has a set of n; different classes
Cy ={ci1, ..., e, }- The classes in different tasks are disjoint, C; N C; = 0,4 #
J,i,7 € {0,...,T}. The training data of task ¢ is denoted as D;. D; consists of
data tuples (z,y) where z is an image and y is its corresponding ground-truth
class label. A deep classification model ® consists of two modules, the feature
extractor F and the classifier head h. F is parameterized with € and the feature
representation of image x is obtained via F(z) € RY. The classifier head h is
parameterized with w.

Under the exemplar-free class incremental learning (EFCIL) setting, a model
can only access D; when training on task ¢. At the initial task, the classification
model P is trained under the full supervision of Dy and resulting in Fy and hy.
At the incremental task ¢, ¢ € {1,...,T}, ®, is partially initialized with 6;_; and
trained with D;. The corresponding feature extractor F; and classifier head hy
are learned. The overall classifier H; is an aggregation of a set of task-specific
classifiers h;,i = {1,...,t}, Hy = {hg,hg,--- ,h;}. During testing, data samples
are from all observed classes so far with balanced distributions.

3.2 A baseline method: Feat*

The feature extractor learned at the initial task is frozen and denoted as Fy.
The corresponding classifier hy is abandoned. F{ is used as the feature extrac-
tor across all tasks and no further training on the deep classifier is needed. This



Title Suppressed Due to Excessive Length 5

Distillation

Fig. 2: Hlustrations of the proposed Rotation Augmented Distillation (RAD)
method for exemplar-free class incremental learning at task ¢. * indicates the
corresponding module is frozen at training.

method is denoted as Feat*. F{j forwards all training samples in D, t € {0,...,T}
once for the class-specific mean feature vectors and such prototypes are pre-
served. NME classifier can then be applied to the seen prototypes so far during
testing. Different from Feat*, a holistic classifier H; for the seen classes till task
t is trained in FeTrIL based on the pseudo-feature generation. During testing of
FeTrIL, H; rather than NME classifier is exploited.

3.3 Rotation Augmented Distillation

The deep classification model ®; can be end-to-end learned with two simple
techniques, rotation data augmentation and knowledge distillation, as illustrated
in Fig. 2. Specifically, for each class, we rotate each training sample x with 90,
180 and 270 degrees [21] and obtained the augmented sample x’:

x' = rotate(z,d),d € {90,180,270}. (1)

Each augmented sample x’ subject to a rotated degree is assigned a new la-
bel 3/, extending the original K-class problem to a new 4K-class problem. The
augmented dataset of task ¢ is denoted as D;.

Both the feature extractor F; and the classifier H; of ®, are jointly optimized
in RAD. Based on dataset D; and the augmented one Dj, the cross-entropy loss
is computed,

Lo= Y CE@()y)+ Y CE@(a).y). (2)

(z,y)€D: (¢’ y")eD;

To alleviate the mismatch between the saved old prototypes and the feature
extractor, the knowledge distillation [16] is employed to regularize learning of
the feature extractor. Specifically, we restrain the feature extractor by matching
the features of new data extracted by the current model with that of the initial
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model Fy:

Lasin = Y KL(Fy(2:0,)[[F5(w;00) + Y KL(F(';6,)|[F5(2'; 60))-
(z,y)€D, (z',y")eD;
3)

The total loss of RAD comprises two terms,
Lo = aLc+ BLaistil, (4)

with o and § are balancing hyper-parameters. Both of them are set to 1 across
all experiments. The learning objective of RAD becomes ming, ., La-

4 Experiments

Datasets The exemplar-free class incremental learning (EFCIL) is conducted
on three datasets. Two large-scale datasets are TinylmageNet [29] and Ima-
geNet100 [30]. The medium-size dataset used is CIFAR100 [31].

Protocols Two EFCIL settings are followed in our experiments. (1) Conven-
tional EFCIL setting. The conventional setting usually with half of the data as
initial tasks. TinylmageNet contains images from 200 classes in total and the
initial task (0) includes half of the dataset, i.e., images from 100 classes, denoted
as B100. The data of the remaining classes are split into T tasks. For example,
T =5 corresponds to 5 incremental steps and each step contains the data of 20
classes. Therefore, this EFCIL setting of TinylmageNet is denoted as B100 5
steps. B100 10 steps and B100 20 steps are the other two EFCIL protocols
of TinylmageNet. Both CIFAR100 and ImageNet100 are with 100 classes. They
have the following three EFCIL protocols: B50 5 steps, B50 10 steps and B40
20 steps. (2) Challenging EFCIL setting. Training a method with half of the
data can result in a strong initial model, which can introduce a non-negligible
bias towards the following incremental learning performance. Therefore, a more
challenging EFCIL setting is proposed by reducing the data in the initial task to
half or even less. Specifically, the challenging EFCIL settings of TinylmageNet
are B50 5 steps, B50 10 steps and B50 25 steps.

Implementation details The proposed Rotation Augmented Distillation (RAD)

and the reproduced SOTA EFCIL methods [11,12,15] are implemented with Py-
Torch [32] and trained and tested on NVIDIA GTX 3080Ti GPU. Other results
are from [15]. The initial model is trained for 200 epochs, and the learning rate

is 0.1 and gradually reduces to zero with a cosine annealing scheduler. For in-
cremental tasks, we train models for 30 epochs, and the initial learning rate is
0.001 with a cosine annealing scheduler. For a fair comparison, we adopt the
default ConvNet backbone: an 18-layer ResNet [33]. The reproduced results of
SOTA methods are with the same augmentation and assigned to incremental
tasks using the same random seed as ours.

Evaluation metrics Three complementary metrics are used throughout the
experiments. Overall performance is typically evaluated by average incre-
mental accuracy [8]. After each batch of classes, the evaluation result is the
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Table 1: Results of different EFCIL methods under the conventional setting. The
overall performance, average incremental accuracy (%), is reported. Best results
in red, second best in blue.

TinyImageNet ImageNet100 CIFAR100

5 steps 10 steps 20 steps 5 steps 10 steps 20 steps 5 steps 10 steps 20 steps
Finetune  28.8 24.0 21.6 31.5 25.7 20.2 27.8 22.4 19.5

Methods

EWC [19] 188 158 124 - 20.4 - 245 212 159
LwF-MC [5] 29.1 231 174 - 31.2 - 45.9 274 201
DeeSIL [18] 498 439 341 679 60.1 505 60.0 506  38.1
LUCIR [21] 41.7 281 189 56.8 414 285 512 411 252
MUC [22] 326 266 219 - 35.1 - 494 302 213
SDC[17] - - - - 61.2 - 568 57.0 589
ABD [23] - - - - - - 638 625 574
IL2A [13]  47.3 447 400 - - - 660 60.3  57.9
PASS [12] 496 473 421 644 61.8 513 635 618  58.1
]

SSRE | 50.4 48.9 48.2 65.4 62.1 58.8 65.9 65.0 61.7
FeTrIL [15] 54.8 53.1 522 72.2 71.2 67.1 66.3 65.2 61.5
Feat” 53.3 53.0 52.8 70.1 69.9 65.1 63.9 63.6 59.8
RAD 55.9 55.6 55.2 724 718 67.4 66.5 65.3 61.9

classification accuracy curve. If a single number is preferable, the average of
these accuracies is reported as average incremental accuracy. Forgetting [34] is
defined to estimate the forgetting of previous tasks. The forgetting measure for
the t-th task after the model has been incrementally trained up to task k as:

ftk = le{OI,I}a,)li—l}(au — ak,t),Vt < k. (5)

Note, an, », is the accuracy of task n after training task m. The average forgetting
at k-th task is then defined as Fy, = % Zf:_ol fF. Lower Fj, implies less forgetting
on previous tasks. Intransigence [34] measures the inability of a model to learn
new tasks. We train a reference model with dataset UF_D; and measure its
accuracy on the held-out set of the k-th task, denoted as a, . The intransigence
for the k-th task as:

I = a; — apr, (6)

where ay ; denotes the accuracy on the k-th task when trained up to task £ in
an incremental manner. Note, the lower the I the better the model.

4.1 Detailed Analysis under conventional EFCIL setting

The overall results of different methods under conventional EFCIL settings of
TinyImageNet, ImageNet100 and CIFAR100 are reported in Tab. 1. The simple
baseline method, Feat*, achieves similar results compared to the SOTA meth-
ods. For example, the margins between FeTrIL and Feat* are no more than 2%.
Feat* is observed to be slightly better (0.6% improvements) than FeTrIL un-
der the TinyImageNet B100 20 steps setting. Therefore, it demonstrates that a
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Fig. 3: Incremental Accuracy Curves of the SOTA methods. Each point repre-
sents the incremental classification accuracy (%) after model learning on each
task.

Table 2: Results on TinylmageNet and ImageNet100 with intransigence and for-
getting metrics. [ represents Intransigence (%), F represents Average Forgetting
(%). Best results in red, second best in blue.
TinyImageNet ImageNet100
Methods 5 steps 10 steps 20 steps | 5 steps 10 steps 20 steps
TWFDIQOFPDIDFDIOFOIOFDIOFW
PASS [12] 22.5 154 24.3 20.6 29.6 25.2|27.0 19.3 32.0 25.7 424 31.6
SSRE [11] 21.3 16.1 23.2 21.1 254 24.3|25.7 24.9 30.2 30.5 34.0 35.0
FeTrIL [15] 18.9 12.6 19.4 11.8 21.0 12.9|21.7 14.7 23.4 154 27.7 18.1
Feat™ 20.9 8.9 209 9.0 20.9 8.9 [25.1 89 251 9.8 31.9 10.4
RAD 18.0 8.7 18.1 9.6 18.4 10.2|21.5 9.7 23.0 11.4 27.6 11.0

model trained with half of the dataset at the initial task may already equip suffi-
cient classification capability for the subsequent incremental tasks even without
further learning. This conclusion is frequently discussed in the previous sections
of this paper and inspires the introduction of the challenging EFCIL setting.
The proposed RAD consistently achieves the best results under conventional
EFCIL settings of all datasets, as shown in Tab. 1. For example, RAD is bet-
ter than FeTrIL on the largest dataset, TinylmageNet. The more incremental
steps the larger improvements. Such improvement increased from 1.1% under
5 steps to 2.5% under 10 steps and reached 3.0% under 20 incremental steps.
Detailed comparisons among different methods along the incremental learning
procedure are also illustrated in Fig. 3. The curve of a superior method is usually
above the inferior ones. For example, the superiority of RAD over FeTrIL can
be demonstrated by their curves in Fig. 3(a).

To provide more detailed analyses on the SOTA EFCIL methods, their per-
formance on another two metrics, forgetting and intransigence, are reported in
Tab. 2. The proposed baseline Feat* achieves the lowest F under most cases. It
shows that Feat™ suffers the least from forgetting since the deep model is frozen
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Table 3: Ablative Study of the proposed RAD. Results of TinylmageNet B100
10 steps and ImageNet100 B50 10 steps are reported.

Components TinyImageNet ImageNet100
Rotation Distillation|Avg (1) I ({) F (J)|Avg (DI ) F (1)
24.0 570 76.1| 25.7 77.3 90.2
v 11.2  60.1 74.3| 13.7 78.7 87.7
v 52.9 21.1 11.6| 70.0 24.2 26.7
v v 55.6 18.1 9.6 71.8 23.0 114
74 74
;73 373
§72 Td’72
an an
Vo5 1o 15 20 25 o5 1o 15 20 25
(a) a (b) B

Fig. 4: Impacts of varying o and g on overall results of ImgNet100 B50 10 steps.

at the initial state and does not fine-tuned on the following tasks. Moreover, the I
of Feat™ still achieves mid-level performance. It further demonstrates the that the
initial model trained on half of the dataset can provide sufficient discriminative
power for the rest classes, as described above. FeTrIL achieves the best overall
performance among the exisitng SOTA methods, as shown in Tab. 1. Therefore,
both I and F of FeTrIL are lower than those of its counterpart SOTA methods,
as shown in Tab. 2. Similarly, the proposed RAD achieves the best overall per-
formance on various datasets. This is consistent with the results in Tab. 2. The
I and F of RAD are either the best or second best results. Specifically, RAD is
only slightly worse than Feat* on the I metric. This is compensated by the best
I performance of RAD. Moreover, RAD is consistently better than FeTrIL on
both metrics. Therefore, the superiority of our RAD relies on the more balanced
performance between plasticity and stability.

Ablation study Contributions of different components in the proposed RAD
are illustrated in Tab. 3. First, applying data rotation in model finetuning harms
the overall performance, as the augmented images seem to alleviate the forgetting
issue (lower F) but make less discriminative new knowledge learned (higher I).
Second, model distillation clearly boosts the overall performance. Distillation
helps the model learning not only to defy forgetting the old knowledge but also
to better capture the discriminative information from new tasks, as its F and I
are relatively low. Finally, RAD combines these two techniques. Detailed analysis
shows that model distillation benefits from rotation data augmentation and then
achieves a superior balance between plasticity and stability.
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Table 4: Results of TinylmageNet under challenging EFCIL setting with aver-
age incremental accuracy (Avg.), intransigence (I) and forgetting metrics (F)
reported. Best results in red, second best in blue.

5 steps 10 steps 25 steps
Methods G MTOF D Ae MIOFD Ave DIDOF QD
PASS[ ] 45.1 30.3 15.5 42.5 32.0 20.2 39.7 34.6 26.5
SSRE[ ] 43.6 32.2 12.2 41.1 33.7 14.8 40.1 33.9 21.5
FeTrIL[ ] 47.9 29.7 13.5 46.5 30.4 134 45.1 30.8 13.9

Feat™ 441 346 10.1 433 346 9.9 427 346 10.1
RAD 48.6 30.2 11.6 47.7 30.3 11.5 47.0 30.2 12.3

Impacts of balancing hyper-parameters There are two balancing hyper-
parameters, « and . They are set to 1.0 by default. As shown in Fig. 4, Our
method is not sensitive to such changes.

4.2 Detailed Analysis under challenging EFCIL setting

The results of challenging EFCIL setting are reported in Tab. 4. Comparing the
overall performance, the average incremental accuracy, of the methods in Tab. 4
with those in Tab. 1, all of them experience significant drops, usually more
than 6%, due to much less data being provided in the initial task under the
new setting. Specifically, the baseline Feat* suffers from the worst performance
degradation, from 9.2% to 10.1%, under different incremental steps. This is be-
cause Feat® is a simple CIL method that relies on the initial task training only.
With less initial data provided, the corresponding model can be much less gen-
eralizable on the new data from unseen classes. Under the challenging EFCIL
setting, the proposed RAD still achieves the best overall performance against
the existing SOTA methods. With the I and F of different methods compared in
Tab. 4, RAD consistently achieve either the best or second best performance on
these metrics. It demonstrates that RAD can better alleviate the plasticity and
stability dilemma in EFCIL than existing methods.

5 Conclusion

We provide a more detailed analysis and comparison of different exemplar-free
class incremental learning (EFCIL) methods than many existing works. Besides
the overall performance, i.e., the average incremental accuracy, two complemen-
tary metrics, the Forgetting and the Intransigence, are included to measure the
EFCIL methods from the perspectives of stability and plasticity. A simple yet
effective EFCIL method, Rotation Augmented Distillation (RAD), has been pro-
posed. RAD consistently achieves one of the state-of-the-art overall performances
under various EFCIL settings. Based on the detailed analysis, we find that the
superiority of RAD comes from the more balanced performance between plastic-
ity and stability. Moreover, a challenging EFCIL new setting with much fewer
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data in initial tasks is proposed. It aims to alleviate the bias of a strong initial
pre-trained model and stand out the incremental learning performance.
Acknowledgement This research is supported by the National Science Foun-
dation for Young Scientists of China (No. 62106289).
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