Skip to main content

A Physically Feasible Counter-Attack Method for Remote Sensing Imaging Point Clouds

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14428))

Included in the following conference series:

  • 333 Accesses

Abstract

This research introduces an innovative approach to address the vulnerability of deep learning-based point cloud target recognition systems to adversarial sample attacks. Instead of directly tampering with the spatial location information of the point cloud data, the approach focuses on modifying specific attribute information. The modified point cloud data is then associated with a simulated physical environment for comprehensive attack testing. The experimental findings demonstrate the aggressive nature of the generated counter-samples achieved through signal amplitude modulation, effectively deceiving deep learning-based target recognition systems. The experimental results highlight the effectiveness of the adversarial object samples generated by modifying the signal amplitude of the point cloud data, showcasing their strong misguiding capabilities towards the deep learning-based target recognition algorithm. This approach ensures good stealthiness and practicality, making it a viable attack method applicable in physical scenarios.

Supported by the National Natural Science Foundation of China under Grant 62002074.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

    Google Scholar 

  2. Lai, B., et al.: 2D3D-MVPNet: learning cross-domain feature descriptors for 2D-3D matching based on multi-view projections of point clouds. Appl. Intell. 52(12), 14178–14193 (2022)

    Article  Google Scholar 

  3. Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3D object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7652–7660 (2018)

    Google Scholar 

  4. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–779 (2019)

    Google Scholar 

  5. Fernandes, D., et al.: Point-cloud based 3D object detection and classification methods for self-driving applications: a survey and taxonomy. Inf. Fusion 68, 161–191 (2021)

    Article  Google Scholar 

  6. Lawin, F.J., Danelljan, M., Tosteberg, P., Bhat, G., Khan, F.S., Felsberg, M.: Deep projective 3D semantic segmentation. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10424, pp. 95–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64689-3_8

    Chapter  Google Scholar 

  7. Wu, B., Wan, A., Yue, X., Keutzer, K.: SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D lidar point cloud. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1887–1893. IEEE (2018)

    Google Scholar 

  8. Liu, D., Yu, R., Su, H.: Extending adversarial attacks and defenses to deep 3D point cloud classifiers. In: 2019 IEEE International Conference on Image Processing (ICIP) (2019)

    Google Scholar 

  9. Xiang, C., Qi, C.R., Li, B.: Generating 3D adversarial point clouds. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  10. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3D point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4338–4364 (2020)

    Article  Google Scholar 

  11. Aloysius, N., Geetha, M.: A review on deep convolutional neural networks. In: 2017 International Conference on Communication and Signal Processing (ICCSP), pp. 0588–0592. IEEE (2017)

    Google Scholar 

  12. Pang, Y., et al.: Graph decipher: a transparent dual-attention graph neural network to understand the message-passing mechanism for the node classification. Int. J. Intell. Syst. 37(11), 8747–8769 (2022)

    Article  Google Scholar 

  13. Pang, Y., et al.: Sparse-Dyn: sparse dynamic graph multirepresentation learning via event-based sparse temporal attention network. Int. J. Intell. Syst. 37(11), 8770–8789 (2022)

    Article  Google Scholar 

  14. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  15. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

  16. Kang, Z., Yang, J., Zhong, R., Wu, Y., Shi, Z., Lindenbergh, R.: Voxel-based extraction and classification of 3-D pole-like objects from mobile lidar point cloud data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(11), 4287–4298 (2018)

    Article  Google Scholar 

  17. Kuang, H., Wang, B., An, J., Zhang, M., Zhang, Z.: Voxel-FPN: multi-scale voxel feature aggregation for 3D object detection from lidar point clouds. Sensors 20(3), 704 (2020)

    Article  Google Scholar 

  18. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  19. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space, arXiv preprint arXiv:1706.02413 (2017)

  20. Dzurisin, D., Dzurisin, D., Lu, Z.: Interferometric synthetic-aperture radar (InSAR). In: Dzurisin, D. (ed.) Volcano Deformation: Geodetic Monitoring Techniques, pp. 153–194. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-49302-0_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanchun Wei , Teng Huang or Haiqing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, B. et al. (2024). A Physically Feasible Counter-Attack Method for Remote Sensing Imaging Point Clouds. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14428. Springer, Singapore. https://doi.org/10.1007/978-981-99-8462-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8462-6_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8461-9

  • Online ISBN: 978-981-99-8462-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics