Abstract
Face spoofing attacks have become an increasingly critical concern when face recognition is widely applied. However, attacking materials have been made visually similar to real human faces, making spoof clues hard to be reliably detected. Previous methods have shown that auxiliary information extracted from the raw RGB data, including depth map, rPPG signal, HSV color space, etc., are promising ways to highlight the hidden spoofing details. In this paper, we consider extracting novel auxiliary information to expose hidden spoofing clues and remove scenarios specific, so as to help the neural network improve the generalization and interpretability of the model’s decision. Considering that presenting faces from spoof mediums will introduce 3D geometry and texture differences, we propose a spoof-guided face decomposition network to disentangle a face image into the components of normal, albedo, light, and shading, respectively. Besides, we design a multi-stream fusion network, which effectively extracts features from the inherent imaging components and captures the complementarity and discrepancy between them. We evaluate the proposed method on various databases, i.e. CASIA-MFSD, Replay-Attack, MSU-MFSD, and OULU-NPU. The results show that our proposed method achieves competitive performance in both intra-dataset and inter-dataset evaluation protocols.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Freitas Pereira, T., Anjos, A., De Martino, J.M., Marcel, S.: LBP – TOP based countermeasure against face spoofing attacks. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7728, pp. 121–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37410-4_11
Komulainen, J., Hadid, A., Pietikäinen, M.: Context based face anti-spoofing. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8. IEEE (2013)
Yang, J., Lei, Z., Li, S.Z.: Learn convolutional neural network for face anti-spoofing, arXiv preprint arXiv:1408.5601 (2014)
Cai, R., Li, Z., Wan, R., Li, H., Hu, Y., Kot, A.C.: Learning meta pattern for face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 17, 1201–1213 (2022)
Boulkenafet, Z., Komulainen, J., Hadid, A.: Face spoofing detection using colour texture analysis. IEEE Trans. Inf. Forensics Secur. 11(8), 1818–1830 (2016)
Chen, H., Hu, G., Lei, Z., Chen, Y., Robertson, N.M., Li, S.Z.: Attention-based two-stream convolutional networks for face spoofing detection. IEEE Trans. Inf. Forensics Secur. 15, 578–593 (2019)
Liu, Y., Jourabloo, A., Liu, X.: Learning deep models for face anti-spoofing: binary or auxiliary supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 389–398 (2018)
Jourabloo, A., Liu, Y., Liu, X.: Face de-spoofing: anti-spoofing via noise modeling. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 290–306 (2018)
Pinto, A., Pedrini, H., Schwartz, W.R., Rocha, A.: Face spoofing detection through visual codebooks of spectral temporal cubes. IEEE Trans. Image Process. 24(12), 4726–4740 (2015)
Pinto, A., Goldenstein, S., Ferreira, A., Carvalho, T., Pedrini, H., Rocha, A.: Leveraging shape, reflectance and albedo from shading for face presentation attack detection. IEEE Trans. Inf. Forensics Secur. 15, 3347–3358 (2020)
Atoum, Y., Liu, Y., Jourabloo, A., Liu, X.: Face anti-spoofing using patch and depth-based CNNs. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 319–328. IEEE (2017)
Wang, Z., et al.: Exploiting temporal and depth information for multi-frame face anti-spoofing, arXiv preprint arXiv:1811.05118 (2018)
Yu, Z., et al.: Searching central difference convolutional networks for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5295–5305 (2020)
George, A., Marcel, S.: Deep pixel-wise binary supervision for face presentation attack detection. In: 2019 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2019)
Bian, Y., Zhang, P., Wang, J., Wang, C., Pu, S.: Learning multiple explainable and generalizable cues for face anti-spoofing. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2310–2314. IEEE (2022)
Mishra, S.K., Sengupta, K., Chu, W.S., Horowitz-Gelb, M., Bouaziz, S., Jacobs, D.: Improved presentation attack detection using image decomposition. In: 2022 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–10. IEEE (2022)
Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)
Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975)
Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)
Trigeorgis, G., Snape, P., Kokkinos, I., Zafeiriou, S.: Face normals “in-the-wild” using fully convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 38–47 (2017)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: IEEE International Conference on Computer Vision (2016)
Wen, D., Han, H., Jain, A.K.: Face spoof detection with image distortion analysis. IEEE Trans. Inf. Forensics Secur. 10(4), 746–761 (2015)
Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: 2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7. IEEE (2012)
Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse attacks. In: 2012 5th IAPR international conference on Biometrics (ICB), pp. 26–31. IEEE (2012)
Boulkenafet, Z., Komulainen, J., Li, L., Feng, X., Hadid, A.: OULU-NPU: a mobile face presentation attack database with real-world variations. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 612–618. IEEE (2017)
Quéau, Y., Mélou, J., Castan, F., Cremers, D., Durou, J.-D.: A variational approach to shape-from-shading under natural illumination. In: Pelillo, M., Hancock, E. (eds.) EMMCVPR 2017. LNCS, vol. 10746, pp. 342–357. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78199-0_23
Shah, P.S.: Shape from shading using linear approximation. Image Vis. Comput. 12(8), 487–498 (1994)
Yang, X., et al.: Face anti-spoofing: model matters, so does data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3507–3516 (2019)
Liu, Y., Liu, X.: Physics-guided spoof trace disentanglement for generic face anti-spoofing, arXiv preprint arXiv:2012.05185 (2020)
Wang, W., Wen, F., Zheng, H., Ying, R., Liu, P.: Conv-MLP: a convolution and MLP mixed model for multimodal face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 17, 2284–2297 (2022)
Boulkenafet, Z., Komulainen, J., Hadid, A.: Face antispoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Process. Lett. 24(2), 141–145 (2016)
Gan, J., Li, S., Zhai, Y., Liu, C.: 3D convolutional neural network based on face anti-spoofing. In: 2017 2nd International Conference on Multimedia and Image Processing (ICMIP) (2017)
Yu, Z., Wan, J., Qin, Y., Li, X., Li, S.Z., Zhao, G.: NAS-FAS: static-dynamic central difference network search for face anti-spoofing. IEEE Trans. Pattern Anal. Mach. Intell. 43(9), 3005–3023 (2021)
Wang, Y., Song, X., Xu, T., Feng, Z., Wu, X.-J.: From RGB to depth: domain transfer network for face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 16, 4280–4290 (2021)
Jia, Y., Zhang, J., Shan, S., Chen, X.: Single-side domain generalization for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8484–8493 (2020)
de Freitas Pereira, T., et al.: Face liveness detection using dynamic texture. EURASIP J. Image Video Process. 2014(1), 1–15 (2014)
Qin, Y., et al.: Learning meta model for zero-and few-shot face anti-spoofing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 11916–11923 (2020)
Wang, G., Han, H., Shan, S., Chen, X.: Cross-domain face presentation attack detection via multi-domain disentangled representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6678–6687 (2020)
Liu, S., et al.: Adaptive normalized representation learning for generalizable face anti-spoofing. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1469–1477 (2021)
Wang, Z., et al.: Domain generalization via shuffled style assembly for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4123–4133 (2022)
Acknowledgement
This work was supported in part by Chinese National Natural Science Foundation Projects #62276254, #62176256, #62106264, #62206280, #U2003111), Beijing Natural Science Foundation under no. L221013, the Defense Industrial Technology Development Program (#JCKY2021906A001), Shandong Provincial Natural Science Foundation under Project ZR2021MF066 and the InnoHK program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, B., Zhu, X., Zhang, X., Chen, S., Li, P., Lei, Z. (2024). Spoof-Guided Image Decomposition for Face Anti-spoofing. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_1
Download citation
DOI: https://doi.org/10.1007/978-981-99-8469-5_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8468-8
Online ISBN: 978-981-99-8469-5
eBook Packages: Computer ScienceComputer Science (R0)