Skip to main content

AU-Oriented Expression Decomposition Learning for Facial Expression Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14429))

Included in the following conference series:

  • 768 Accesses

Abstract

Facial Expression Recognition (FER) has received extensive attention in recent years. Due to the strong similarity between expressions, it is urgent to distinguish them meticulously in a finer-grained manner. In this paper, we propose a method, named AU-oriented Expression Decomposition Learning (AEDL), which aims to decouple expressions into Action Units (AUs) and focuses on subtle facial differences. In particular, AEDL comprises two branches: the AU Auxiliary (AUA) branch and the FER branch. For the former, the generic knowledge of dependencies among AUs is leveraged to supervise AU predictions which are then transformed into new expression predictions with a learnable matrix modeled by the relationship between AUs and expressions. For the latter, fusion features are employed to compensate for the minority classes to ensure adequate feature learning. FER predictions are guided by the AUA branch, mining detailed distinctions between expressions. Importantly, the proposed method is independent of the backbone network and brings no extra burden on inference. We conduct experiments on popular in-the-wild datasets and achieve leading performance, proving the effectiveness of the proposed AEDL.

Supported by the National Natural Science Foundation of China (Grant # 62071216, 62231002 and U1936202.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barsoum, E., Zhang, C., Ferrer, C.C., Zhang, Z.: Training deep networks for facial expression recognition with crowd-sourced label distribution. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction, pp. 279–283 (2016)

    Google Scholar 

  2. Chen, D., Mei, J.P., Wang, C., Feng, Y., Chen, C.: Online knowledge distillation with diverse peers. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3430–3437 (2020)

    Google Scholar 

  3. Cui, Z., Song, T., Wang, Y., Ji, Q.: Knowledge augmented deep neural networks for joint facial expression and action unit recognition. Adv. Neural. Inf. Process. Syst. 33, 14338–14349 (2020)

    Google Scholar 

  4. Ekman, P., Friesen, W.V.: Facial action coding system. Environ. Psychol. Nonverbal Behav. (1978)

    Google Scholar 

  5. Farzaneh, A.H., Qi, X.: Facial expression recognition in the wild via deep attentive center loss. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2402–2411 (2021)

    Google Scholar 

  6. Gu, Y., Yan, H., Zhang, X., Wang, Y., Ji, Y., Ren, F.: Towards facial expression recognition in the wild via noise-tolerant network. IEEE Trans. Circ. Syst. Video Technol. (2022)

    Google Scholar 

  7. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  8. Jiang, J., Deng, W.: Disentangling identity and pose for facial expression recognition. IEEE Trans. Affect. Comput. 13(4), 1868–1878 (2022)

    Article  Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci. (2014)

    Google Scholar 

  10. Li, S., Deng, W., Du, J.: Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2584–2593. IEEE (2017)

    Google Scholar 

  11. Lin, Z., She, J., Shen, Q.: Real emotion seeker: recalibrating annotation for facial expression recognition. Multimedia Syst. 29(1), 139–151 (2023)

    Article  Google Scholar 

  12. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 94–101. IEEE (2010)

    Google Scholar 

  13. Mollahosseini, A., Hasani, B., Mahoor, M.H.: AffectNet: a database for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput. 10(1), 18–31 (2017)

    Article  Google Scholar 

  14. Pu, T., Chen, T., Xie, Y., Wu, H., Lin, L.: Au-expression knowledge constrained representation learning for facial expression recognition. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 11154–11161. IEEE (2021)

    Google Scholar 

  15. Ruan, D., Yan, Y., Lai, S., Chai, Z., Shen, C., Wang, H.: Feature decomposition and reconstruction learning for effective facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7660–7669 (2021)

    Google Scholar 

  16. She, J., Hu, Y., Shi, H., Wang, J., Shen, Q., Mei, T.: Dive into ambiguity: latent distribution mining and pairwise uncertainty estimation for facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6248–6257 (2021)

    Google Scholar 

  17. Valstar, M., Pantic, M.: Induced disgust, happiness and surprise: an addition to the mmi facial expression database. In: Proceedings of the 3rd International Workshop on EMOTION (satellite of LREC): Corpora for Research on Emotion and Affect, p. 65. Paris, France (2010)

    Google Scholar 

  18. Wang, K., Peng, X., Yang, J., Lu, S., Qiao, Y.: Suppressing uncertainties for large-scale facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6897–6906 (2020)

    Google Scholar 

  19. Xue, F., Wang, Q., Guo, G.: Transfer: learning relation-aware facial expression representations with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3601–3610 (2021)

    Google Scholar 

  20. Yang, J., Lv, Z., Kuang, K., Yang, S., Xiao, L., Tang, Q.: RASN: using attention and sharing affinity features to address sample imbalance in facial expression recognition. IEEE Access 10, 103264–103274 (2022)

    Article  Google Scholar 

  21. Zeng, D., Lin, Z., Yan, X., Liu, Y., Wang, F., Tang, B.: Face2Exp: combating data biases for facial expression recognition. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20259–20268 (2022). https://doi.org/10.1109/CVPR52688.2022.01965

  22. Zhang, X., et al.: BP4D-spontaneous: a high-resolution spontaneous 3D dynamic facial expression database. Image Vis. Comput. 32(10), 692–706 (2014)

    Article  Google Scholar 

  23. Zhang, Y., Dong, W., Hu, B.G., Ji, Q.: Classifier learning with prior probabilities for facial action unit recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5108–5116 (2018)

    Google Scholar 

  24. Zhao, G., Huang, X., Taini, M., Li, S.Z., PietikƤInen, M.: Facial expression recognition from near-infrared videos. Image Vis. Comput. 29(9), 607–619 (2011)

    Article  Google Scholar 

  25. Zhao, K., Chu, W.S., De la Torre, F., Cohn, J.F., Zhang, H.: Joint patch and multi-label learning for facial action unit detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2207–2216 (2015)

    Google Scholar 

  26. Zhao, Z., Liu, Q., Wang, S.: Learning deep global multi-scale and local attention features for facial expression recognition in the wild. IEEE Trans. Image Process. 30, 6544–6556 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Z., She, J., Shen, Q. (2024). AU-Oriented Expression Decomposition Learning for Facial Expression Recognition. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8469-5_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8468-8

  • Online ISBN: 978-981-99-8469-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics