Skip to main content

Accurate Facial Landmark Detector via Multi-scale Transformer

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14429))

Included in the following conference series:

Abstract

Facial landmark detection is an essential prerequisite for many face applications, which has attracted much attention and made remarkable progress in recent years. However, some problems still need to be solved urgently, including improving the accuracy of facial landmark detectors in complex scenes, encoding long-range relationships between keypoints and facial components, and optimizing the robustness of methods in unconstrained environments. To address these problems, we propose a novel facial landmark detector via multi-scale transformer (MTLD), which contains three modules: Multi-scale Transformer, Joint Regression, and Structure Loss. The proposed Multi-scale Transformer focuses on capturing long-range information and cross-scale representations from multi-scale feature maps. The Joint Regression takes advantage of both coordinate and heatmap regression, which could boost the inference speed without sacrificing model accuracy. Furthermore, in order to explore the structural dependency between facial landmarks, we design the Structure Loss to fully utilize the geometric information in face images. We evaluate the proposed method through extensive experiments on four benchmark datasets. The results demonstrate that our method outperforms state-of-the-art approaches both in accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jin, H., Liao, S., Shao, L.: Pixel-in-pixel net: towards efficient facial landmark detection in the wild. IJCV 129(12), 3174–3194 (2021)

    Article  Google Scholar 

  2. Feng, Z.H., Kittler, J., Awais, M., Huber, P., Wu, X.J.: Wing loss for robust facial landmark localisation with convolutional neural networks. In: CVPR, pp. 2235–2245 (2018)

    Google Scholar 

  3. Xia, J., Qu, W., Huang, W., Zhang, J., Wang, X., Xu, M.: Sparse local patch transformer for robust face alignment and landmarks inherent relation learning. In: CVPR, pp. 4052–4061 (2022)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  5. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. TPAMI 43(10), 3349–3364 (2020)

    Article  Google Scholar 

  6. Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., Zhou, Q.: Look at boundary: a boundary-aware face alignment algorithm. In: CVPR, pp. 2129–2138 (2018)

    Google Scholar 

  7. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale, arXiv preprint arXiv:2010.11929 (2020)

  9. Chen, C.-F., Fan, Q., Panda, R.: Crossvit: cross-attention multi-scale vision transformer for image classification. In: CVPR, pp. 357–366 (2021)

    Google Scholar 

  10. Zhu, M., Shi, D., Zheng, M., Sadiq, M.: Robust facial landmark detection via occlusion-adaptive deep networks. In: CVPR, pp. 3486–3496 (2019)

    Google Scholar 

  11. Wang, X., Bo, L., Fuxin, L.: Adaptive wing loss for robust face alignment via heatmap regression. In: CVPR, pp. 6971–6981 (2019)

    Google Scholar 

  12. Lin, C., et al.: Structure-coherent deep feature learning for robust face alignment. TIP 30, 5313–5326 (2021)

    Google Scholar 

  13. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: ICCV Workshops, pp. 397–403 (2013)

    Google Scholar 

  14. Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face landmark estimation under occlusion. In: ICCV, pp. 1513–1520 (2013)

    Google Scholar 

  15. Koestinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: ICCV Workshops, pp. 2144–2151. IEEE (2011)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Macao Polytechnic University (RP/FCSD-02/2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sha, Y., Meng, W., Zhai, X., Xie, C., Li, K. (2024). Accurate Facial Landmark Detector via Multi-scale Transformer. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8469-5_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8468-8

  • Online ISBN: 978-981-99-8469-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics