Abstract
Facial landmark detection is an essential prerequisite for many face applications, which has attracted much attention and made remarkable progress in recent years. However, some problems still need to be solved urgently, including improving the accuracy of facial landmark detectors in complex scenes, encoding long-range relationships between keypoints and facial components, and optimizing the robustness of methods in unconstrained environments. To address these problems, we propose a novel facial landmark detector via multi-scale transformer (MTLD), which contains three modules: Multi-scale Transformer, Joint Regression, and Structure Loss. The proposed Multi-scale Transformer focuses on capturing long-range information and cross-scale representations from multi-scale feature maps. The Joint Regression takes advantage of both coordinate and heatmap regression, which could boost the inference speed without sacrificing model accuracy. Furthermore, in order to explore the structural dependency between facial landmarks, we design the Structure Loss to fully utilize the geometric information in face images. We evaluate the proposed method through extensive experiments on four benchmark datasets. The results demonstrate that our method outperforms state-of-the-art approaches both in accuracy and efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jin, H., Liao, S., Shao, L.: Pixel-in-pixel net: towards efficient facial landmark detection in the wild. IJCV 129(12), 3174–3194 (2021)
Feng, Z.H., Kittler, J., Awais, M., Huber, P., Wu, X.J.: Wing loss for robust facial landmark localisation with convolutional neural networks. In: CVPR, pp. 2235–2245 (2018)
Xia, J., Qu, W., Huang, W., Zhang, J., Wang, X., Xu, M.: Sparse local patch transformer for robust face alignment and landmarks inherent relation learning. In: CVPR, pp. 4052–4061 (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Wang, J., et al.: Deep high-resolution representation learning for visual recognition. TPAMI 43(10), 3349–3364 (2020)
Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., Zhou, Q.: Look at boundary: a boundary-aware face alignment algorithm. In: CVPR, pp. 2129–2138 (2018)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale, arXiv preprint arXiv:2010.11929 (2020)
Chen, C.-F., Fan, Q., Panda, R.: Crossvit: cross-attention multi-scale vision transformer for image classification. In: CVPR, pp. 357–366 (2021)
Zhu, M., Shi, D., Zheng, M., Sadiq, M.: Robust facial landmark detection via occlusion-adaptive deep networks. In: CVPR, pp. 3486–3496 (2019)
Wang, X., Bo, L., Fuxin, L.: Adaptive wing loss for robust face alignment via heatmap regression. In: CVPR, pp. 6971–6981 (2019)
Lin, C., et al.: Structure-coherent deep feature learning for robust face alignment. TIP 30, 5313–5326 (2021)
Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: ICCV Workshops, pp. 397–403 (2013)
Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face landmark estimation under occlusion. In: ICCV, pp. 1513–1520 (2013)
Koestinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: ICCV Workshops, pp. 2144–2151. IEEE (2011)
Acknowledgements
This research was supported by the Macao Polytechnic University (RP/FCSD-02/2022).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Sha, Y., Meng, W., Zhai, X., Xie, C., Li, K. (2024). Accurate Facial Landmark Detector via Multi-scale Transformer. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_22
Download citation
DOI: https://doi.org/10.1007/978-981-99-8469-5_22
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8468-8
Online ISBN: 978-981-99-8469-5
eBook Packages: Computer ScienceComputer Science (R0)