Skip to main content

PRFNet: Progressive Region Focusing Network for Polyp Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14429))

Included in the following conference series:

  • 372 Accesses

Abstract

In clinical practice, colonoscopy serves as an efficacious approach to detect colonic polyps and aids in the early diagnosis of colon cancer. However, the precise segmentation of polyps poses a challenge due to variability in size and shape, indistinct boundaries, and similar feature representations with healthy tissue. To address these issues, we propose a concise yet very effective progressive region focusing network (PRFNet) that leverages progressive training to iteratively refine segmentation results. Specifically, PRFNet shares encoder parameters and partitions the feature learning process of decoder into various stages, enabling the aggregation of features at different granularities through cross-stage skip connections and progressively mining the detailed features of lesion regions at different granularities. In addition, we introduce a lightweight adaptive region focusing (ARF) module, empowering the network to mask the non-lesion region and focus on mining lesion region features. Extensive experiments have been conducted on several public polyp segmentation datasets, where PRFNet demonstrated competitive segmentation results compared to state-of-the-art polyp segmentation methods. Furthermore, we set up multiple cross-dataset training and testing experiments, substantiating the superior generalization performance of PRFNet.

J. Chen and J. Cheng—Contributed equally and should be considered co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

    Google Scholar 

  2. Bo, D., Wenhai, W., Deng-Ping, F., Jinpeng, L., Huazhu, F., Ling, S.: Polyp-PVT: polyp segmentation with pyramid vision transformers. In: CAAI AIR (2023)

    Google Scholar 

  3. Chao, P., Kao, C.Y., Ruan, Y.S., Huang, C.H., Lin, Y.L.: HarDNet: a low memory traffic network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3552–3561 (2019)

    Google Scholar 

  4. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation (2021)

    Google Scholar 

  5. Cheng, J., et al.: ResGANet: residual group attention network for medical image classification and segmentation. Med. Image Anal. 76, 102313 (2022)

    Article  Google Scholar 

  6. Cheng, J., et al.: DDU-Net: a dual dense U-structure network for medical image segmentation. Appl. Soft Comput. 126, 109297 (2022)

    Article  Google Scholar 

  7. Cheng, J., Tian, S., Yu, L., Lu, H., Lv, X.: Fully convolutional attention network for biomedical image segmentation. Artif. Intell. Med. 107, 101899 (2020)

    Article  Google Scholar 

  8. Fan, D.P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  9. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. arXiv arXiv:1911.07069 (2019)

  10. Lai, H., Luo, Y., Zhang, G., Shen, X., Li, B., Lu, J.: Toward accurate polyp segmentation with cascade boundary-guided attention. Vis. Comput. 39(4), 1453–1469 (2022)

    Google Scholar 

  11. Lou, A., Guan, S., Loew, M.: CaraNet: context axial reverse attention network for segmentation of small medical objects. J. Med. Imaging 10(1), 014005 (2023)

    Article  Google Scholar 

  12. Lou, M., Meng, J., Qi, Y., Li, X., Ma, Y.: MCRNet: multi-level context refinement network for semantic segmentation in breast ultrasound imaging. Neurocomputing 470, 154–169 (2022)

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Salmo, E., Haboubi, N.: Adenoma and malignant colorectal polyp: pathological considerations and clinical applications. EMJ Gastroenterol. 7, 92–102 (2018)

    Article  Google Scholar 

  15. Srivastava, A., Chanda, S., Jha, D., Pal, U., Ali, S.: GMSRF-Net: an improved generalizability with global multi-scale residual fusion network for polyp segmentation. arXiv preprint arXiv:2111.10614 (2021)

  16. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2016)

    Article  Google Scholar 

  17. Tomar, N.K., Shergill, A., Rieders, B., Bagci, U., Jha, D.: TransResU-Net: transformer based ResU-Net for real-time colonoscopy polyp segmentation. arXiv preprint arXiv:2206.08985 (2022)

  18. Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. 2017, 4037190 (2016)

    Google Scholar 

  19. Wang, J., Huang, Q., Tang, F., Meng, J., Su, J., Song, S.: Stepwise feature fusion: local guides global. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022. LNCS, vol. 13433, pp. 110–120. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_11

  20. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 568–578 (2021)

    Google Scholar 

  21. Zhang, R., et al.: Lesion-aware dynamic kernel for polyp segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022. LNCS, vol. 13433, pp. 99–109. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_10

  22. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39, 1856–1867 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Cheng, J., Jiang, L., Yin, P., Wang, G., Zhu, M. (2024). PRFNet: Progressive Region Focusing Network for Polyp Segmentation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8469-5_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8468-8

  • Online ISBN: 978-981-99-8469-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics