Abstract
The accurate segmentation of thyroid nodules in ultrasound (US) images is critical for computer-aided diagnosis of thyroid cancer. While the fully supervised methods achieve high accuracy, they require a significant amount of annotated data for training, which is both costly and time-consuming. Semi-supervised learning can address this challenge by using a limited amount of labeled data in combination with a large amount of unlabeled data. However, the existing semi-supervised segmentation approaches often fail to account for both geometric shape constraints and scale differences of objects. To address this issue, in this paper we propose a novel Pyramid Shape-aware Semi-supervised Learning (PSSSL) framework for thyroid nodules segmentation in US images, which employs a dual-task pyramid prediction network to jointly predict the Segmentation Maps (SEG) and Signed Distance Maps (SDM) of objects at different scales. Pyramid feature prediction enables better adaptation to differences in nodule size, while the SDM provides a representation that encodes richer shape features of the target. PSSSL learns from the labeled data by minimizing the discrepancy between the prediction and the ground-truth and learns from unlabeled data by minimizing the discrepancy between the predictions at different scales and the average prediction. To achieve reliable and robust segmentation, two uncertainty estimation modules are designed to emphasize reliable predictions while ignoring unreliable predictions from unlabeled data. The proposed PSSSL framework achieves superior performance in both quantitative and qualitative evaluations on the DDTI and TN3k datasets to State-Of-The-Art semi-supervised approaches. The code is available at https://github.com/wuliZN2020/Thyroid-Segmentation-PSSSL.
This work was partially supported by the Key R &D Project in Hubei Province (2023BCB024) and the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University (ZNJC202226).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sun, J., et al.: TNSNet: thyroid nodule segmentation in ultrasound imaging using soft shape supervision. Comput. Meth. Program. Biomed. 215, 106600 (2022)
Chen, J., You, H., Li, K.: A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images. Comput. Meth. Program. Biomed. 185, 105329 (2020)
Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2020)
Lee, D.-H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896 (2013)
Pham, H., Dai, Z., Xie, Q., Le, Q.V.: Meta pseudo labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11557–11568 (2021)
Xie, Q., Luong, M.-T., Hovy, E., Le, Q.V.: Self-training with noisy student improves ImageNet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)
Shi, W., Gong, Y., Ding, C., Ma, Z., Tao, X., Zheng, N.: Transductive semi-supervised deep learning using min-max features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 311–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_19
Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)
Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67
Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. Proc. AAAI Conf. Artif. Intell. 35, 8801–8809 (2021)
Zheng, H., et al.: Semi-supervised segmentation of liver using adversarial learning with deep atlas prior. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 148–156. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_17
He, Y., et al.: DPA-DenseBiasNet: semi-supervised 3D fine renal artery segmentation with dense biased network and deep priori anatomy. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 139–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_16
Luo, X., et al.: Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 318–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_30
Xue, Y., et al.: Shape-aware organ segmentation by predicting signed distance maps. Proc. AAAI Conf. Artif. Intell. 34, 12565–12572 (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Li, S., Zhang, C., He, X.: Shape-aware semi-supervised 3D semantic segmentation for medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part I. LNCS, vol. 12261, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_54
Fuglede, B., Topsoe, F.: Jensen-Shannon divergence and Hilbert space embedding. In: Proceedings of the International Symposium on Information Theory, ISIT 2004, p. 31. IEEE (2004)
Pedraza, L., Vargas, C., Narváez, F., Durán, O., Muñoz, E., Romero, E.: An open access thyroid ultrasound image database. In: 10th International Symposium on Medical Information Processing and Analysis, vol. 9287, pp. 188–193. SPIE (2015)
Gong, H., et al.: Multi-task learning for thyroid nodule segmentation with thyroid region prior. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 257–261. IEEE (2021)
Wang, J., Lukasiewicz, T.: Rethinking Bayesian deep learning methods for semi-supervised volumetric medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 182–190 (2022)
Wu, Y., Wu, Z., Wu, Q., Ge, Z., Cai, J.: Exploring smoothness and class-separation for semi-supervised medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022, Part V. LNCS, vol. 13435, pp. 34–43. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_4
Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part II. LNCS, vol. 12902, pp. 297–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28
Xiong, Z., et al.: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Med. Image Anal. 67, 101832 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, N., Liu, J., Wu, M. (2024). Pyramid Shape-Aware Semi-supervised Learning for Thyroid Nodules Segmentation in Ultrasound Images. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_32
Download citation
DOI: https://doi.org/10.1007/978-981-99-8469-5_32
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8468-8
Online ISBN: 978-981-99-8469-5
eBook Packages: Computer ScienceComputer Science (R0)