Skip to main content

CFNet: A Coarse-to-Fine Framework for Coronary Artery Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14429))

Included in the following conference series:

  • 402 Accesses

Abstract

Coronary Artery (CA) segmentation has become an important task to facilitate coronary artery disease diagnosis. However, existing methods have not effectively addressed the challenges posed by the thin and complex structure of CA, leading to unsatisfactory performance in grouping local detailed vessel structures. Therefore, we proposed a novel coarse-to-fine segmentation framework, namely CFNet, to refine the CA segmentation results progressively. The global structure targeting module aims to capture the spatial structure of the CA by introducing dilated pseudo labels as supervision. In addition, a lightweight transformer-based module is designed to refine the coarse results and produce more accurate segmentation results by capturing the long-range dependencies. Our model exploits both local and global contextual features by integrating a convolutional neural network and visual Transformer. These two modules are cascaded using a center-line patching strategy, which filters out unnecessary features and mitigates the sparsity of CA annotation. Experimental results demonstrate that our model performs well in CA segmentation, particularly in handling challenging cases for fine vessel structures, and achieves competitive results on a large-scale dataset, i.e., ImageCAS, in comparison to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision, ECCV 2022 Workshops. LNCS, vol. 13803, pp. 205–218. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25066-8_9

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chen, J., Lu, Y., et al.: TransUNet: transformers make strong encoders for medical image segmentation. CoRR (2021). https://arxiv.org/abs/2102.04306

  4. Chen, Y.C., Lin, Y.C., et al.: Coronary artery segmentation in cardiac CT angiography using 3D multi-channel U-Net. arXiv preprint arXiv:1907.12246 (2019)

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Dosovitskiy, A., Beyer, L., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  7. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2021. LNCS, vol. 12962, pp. 272–284 (2022). Springer, Cham. https://doi.org/10.1007/978-3-031-08999-2_22

  8. Hatamizadeh, A., Tang, Y., et al.: UNETR: transformers for 3D medical image segmentation. In: WACV, pp. 574–584 (2022)

    Google Scholar 

  9. Huang, H., Lin, L., et al.: UNet 3+: a full-scale connected UNet for medical image segmentation. In: ICASSP, pp. 1055–1059 (2020)

    Google Scholar 

  10. Kong, B., Wang, X., et al.: Learning tree-structured representation for 3D coronary artery segmentation. Comput. Med. Imaging Graph. 80, 101688 (2020)

    Article  Google Scholar 

  11. Lee, H.H., Bao, S., et al.: 3D UX-Ne: a large kernel volumetric convnet modernizing hierarchical transformer for medical image segmentation (2022)

    Google Scholar 

  12. Li, C., Tan, Y., et al.: Attention Unet++: a nested attention-aware U-Net for liver CT image segmentation. In: ICIP, pp. 345–349 (2020)

    Google Scholar 

  13. Li, S., Dong, M., et al.: Attention Dense-U-Net for automatic breast mass segmentation in digital mammogram. IEEE Access 7, 59037–59047 (2019)

    Article  Google Scholar 

  14. Liu, Z., Lin, Y., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV, pp. 10012–10022 (2021)

    Google Scholar 

  15. Milletari, F., Navab, N., et al.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571 (2016)

    Google Scholar 

  16. Mnih, V., Heess, N., et al.: Recurrent models of visual attention. In: NeurIPS, pp. 2204–2212 (2014)

    Google Scholar 

  17. Oktay, O., Schlemper, J., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE TPAMI 39, 640–651 (2017)

    Article  Google Scholar 

  20. Shen, Y., Fang, Z., et al.: Coronary arteries segmentation based on 3D FCN with attention gate and level set function. IEEE Access 7, 42826–42835 (2019)

    Article  Google Scholar 

  21. Touvron, H., Cord, M., et al.: Training data-efficient image transformers & distillation through attention. In: ICML, pp. 10347–10357 (2021)

    Google Scholar 

  22. Vaswani, A., Shazeer, N., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  23. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11

    Chapter  Google Scholar 

  24. Wang, Z., Cun, X., et al.: Uformer: a general U-shaped transformer for image restoration. In: CVPR, pp. 17683–17693 (2022)

    Google Scholar 

  25. Wu, Y.H., Liu, Y., et al.: P2T: pyramid pooling transformer for scene understanding. IEEE TPAMI 45, 12760–12771 (2022)

    Article  Google Scholar 

  26. Xiao, X., Lian, S., et al.: Weighted Res-UNet for high-quality retina vessel segmentation. In: ITME, pp. 327–331 (2018)

    Google Scholar 

  27. Xie, E., Wang, W., et al.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: NeurIPS, pp. 12077–12090 (2021)

    Google Scholar 

  28. Zeng, A., Wu, C., et al.: ImageCAS: a large-scale dataset and benchmark for coronary artery segmentation based on computed tomography angiography images. CoRR (2022)

    Google Scholar 

  29. Zhao, G., Liang, K., et al.: Graph convolution based cross-network multi-scale feature fusion for deep vessel segmentation. IEEE TMI 42, 183–195 (2022)

    Google Scholar 

  30. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grants 61976058 and 62302104, the Science and Technology Planning Project of Guangdong under Grants 2019A050510041, 2021A1515012300, 2021B0101220006, 2022A1515011592, and 2023A1515012884, and the Science and Technology Planning Project of Guangzhou under Grant 202103000034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhu Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, S. et al. (2024). CFNet: A Coarse-to-Fine Framework for Coronary Artery Segmentation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8469-5_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8468-8

  • Online ISBN: 978-981-99-8469-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics