Skip to main content

Pseudo-Label Clustering-Driven Dual-Level Contrast Learning Based Source-Free Domain Adaptation for Fundus Image Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14429))

Included in the following conference series:

  • 378 Accesses

Abstract

Source-Free Domain Adaptation (SFDA) has gained attention as a promising solution to address the domain shift issue, eliminating the requirement for labeled data from the source domain. However, current SFDA methods heavily rely on self-training, which are confronted with two main challenges: inevitable occurrence of noisy pseudo-labels and insufficient adaptation across a single scale or level. To overcome these limitations, a novel SFDA method is developed for fundus image segmentation across different datasets. Our method encompasses two essential phases: the generation phase and the adaptation phase. In the generation phase, we introduce clustering to SFDA segmentation and propose a feature-enhanced clustering method to generate robust pseudo-labels. This process improves adaptation quality particularly when the source model’s feature learning capability is limited in the target domain. In the adaptation phase, we develop a dual-level contrast learning method aimed at mitigating domain shift through self-supervision. First, we present a full-scale feature-level contrast loss that utilizes low-level and high-level features from both the target domain data and its augmented version. This enables the model to acquire discriminative characteristics while minimizing disparities between the original and augmented data. Second, we design a clinical prior-guided label-level contrast loss to filter out low-quality pseudo-labels, providing favorable guidance for the segmentation model. Extensive experiments on cross-domain datasets of fundus images demonstrate its superiority over mainstream SFDA methods. In the challenging Drishti-GS target domain, our method surpasses SOTA models by 3.14% and 2.18% in optic disc and optic cup Dice scores, respectively. Codes are available at https://github.com/M4cheal/PCDCL-SFDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., Ayed, I.B.: Source-free domain adaptation for image segmentation. Med. Image Anal. 82, 102617 (2022)

    Article  Google Scholar 

  2. Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., Ben Ayed, I.: Source-relaxed domain adaptation for image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 490–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_48

    Chapter  Google Scholar 

  3. Cardace, A., Ramirez, P.Z., Salti, S., Di Stefano, L.: Shallow features guide unsupervised domain adaptation for semantic segmentation at class boundaries. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1160–1170 (2022)

    Google Scholar 

  4. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)

    Article  Google Scholar 

  5. Chen, C., Liu, Q., Jin, Y., Dou, Q., Heng, P.-A.: Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 225–235. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_22

    Chapter  Google Scholar 

  6. Chen, Z., Pan, Y., Xia, Y.: Reconstruction-driven dynamic refinement based unsupervised domain adaptation for joint optic disc and cup segmentation. IEEE J. Biomed. Health Inf. 27, 3537–3548 (2023)

    Article  Google Scholar 

  7. Ding, N., Xu, Y., Tang, Y., Xu, C., Wang, Y., Tao, D.: Source-free domain adaptation via distribution estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7212–7222 (2022)

    Google Scholar 

  8. Feng, W., et al.: Unsupervised domain adaptive fundus image segmentation with category-level regularization. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13432, pp. 497–506. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_48

  9. Hu, S., Liao, Z., Xia, Y.: Domain specific convolution and high frequency reconstruction based unsupervised domain adaptation for medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13437, pp. 650–659. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_62

  10. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  11. Lee, J., Lee, G.: Feature alignment by uncertainty and self-training for source-free unsupervised domain adaptation. Neural Netw. 161, 682–692 (2023)

    Article  Google Scholar 

  12. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 6028–6039. PMLR (2020)

    Google Scholar 

  13. Liu, P., Tran, C.T., Kong, B., Fang, R.: CADA: multi-scale collaborative adversarial domain adaptation for unsupervised optic disc and cup segmentation. Neurocomputing 469, 209–220 (2022)

    Article  Google Scholar 

  14. Liu, X., Yuan, Y.: A source-free domain adaptive polyp detection framework with style diversification flow. IEEE Trans. Med. Imaging 41(7), 1897–1908 (2022)

    Article  Google Scholar 

  15. Liu, Y., Zhang, W., Wang, J.: Source-free domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1215–1224 (2021)

    Google Scholar 

  16. Orlando, J., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Article  Google Scholar 

  17. Perone, C.S., Ballester, P., Barros, R.C., Cohen-Adad, J.: Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. Neuroimage 194, 1–11 (2019)

    Article  Google Scholar 

  18. Sivaswamy, J., Krishnadas, S., Chakravarty, A., Joshi, G., Tabish, A.S., et al.: A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed. Imaging Data Pap. 2(1), 1004 (2015)

    Google Scholar 

  19. Varsavsky, T., Orbes-Arteaga, M., Sudre, C.H., Graham, M.S., Nachev, P., Cardoso, M.J.: Test-time unsupervised domain adaptation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 428–436. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_42

    Chapter  Google Scholar 

  20. Wang, S., Yu, L., Li, K., Yang, X., Fu, C.-W., Heng, P.-A.: Boundary and entropy-driven adversarial learning for fundus image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 102–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_12

    Chapter  Google Scholar 

  21. Wang, S., Yu, L., Yang, X., Fu, C.W., Heng, P.A.: Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Trans. Med. Imaging 38(11), 2485–2495 (2019)

    Article  Google Scholar 

  22. Wilson, G., Cook, D.J.: A survey of unsupervised deep domain adaptation. ACM Trans. Intell. Syst. Technol. 11(5), 1–46 (2020)

    Article  Google Scholar 

  23. Xie, X., Niu, J., Liu, X., Chen, Z., Tang, S., Yu, S.: A survey on incorporating domain knowledge into deep learning for medical image analysis. Med. Image Anal. 69, 101985 (2021)

    Article  Google Scholar 

  24. Xu, Z., Lu, D., Wang, Y., Luo, J., Wei, D., Zheng, Y., Tong, R.K.y.: Denoising for relaxing: Unsupervised domain adaptive fundus image segmentation without source data. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol. 13435, pp. 214–224. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_21

  25. Yang, C., Guo, X., Chen, Z., Yuan, Y.: Source free domain adaptation for medical image segmentation with Fourier style mining. Med. Image Anal. 79, 102457 (2022)

    Article  Google Scholar 

  26. Yang, S., Wang, Y., Wang, K., Jui, S., et al.: Attracting and dispersing: a simple approach for source-free domain adaptation. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from the National Natural Science Foundation of China (Nos. 62062040, 62102270, 62041702), the project of Natural Science Foundation of Liaoning province (No. 2023-MS-246), the Outstanding Youth Project of Jiangxi Natural Science Foundation (No. 20212ACB212003), and the Jiangxi Province Key Subject Academic and Technical Leader Funding Project (No. 20212BCJ23017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugen Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, W., Ji, J., Cui, W., Yi, Y. (2024). Pseudo-Label Clustering-Driven Dual-Level Contrast Learning Based Source-Free Domain Adaptation for Fundus Image Segmentation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8469-5_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8468-8

  • Online ISBN: 978-981-99-8469-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics