Skip to main content

3D Lightweight Spatial-Spectral Attention Network for Hyperspectral Image Classification

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

Compared with the convolutional neural network (CNN), a 3D lightweight network (3D-LWNet) can successfully perform hyperspectral image (HSI) classification using fewer network parameters. However, results of these methods can not reflect the effect of each of the different features used in the classification process. To address this problem, we propose a 3D lightweight spatial-spectral attention network (3D-LSSAN), which adopts a 3D large kernel attention (3D-LKA) mechanism to better determine the effect of each feature in HSI classification. 3D-LKA directly operates on spatial-spectral features of HSI, which can reduce the number of trainable parameter and overcome the network overfitting. Moreover, 3D-LKA disassembles the convolution kernel, which can capture local information and long-range information in HSI using a small amount of computational power. Specifically, the HSI is first sent through a convolutional network layer to generate shallow spatial-spectral features. Second, these shallow features are input into six spatial-spectral attention (SSA) units based on 3D-LKA to emphasize the importance of different parts of features. Finally, output features of the SSA units are fed into a fully connected layer to obtain the classification result. Experimental results on two publicly available data sets demonstrate that the proposed 3D-LSSAN achieves better classification performance than the other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lacar, F., Lewis, M., Grierson, I.: Use of hyperspectral imagery for mapping grape varieties in the Barossa valley, South Australia. In: 2001 International Geoscience and Remote Sensing Symposium, vol. 6, pp. 2875–2877 (2001)

    Google Scholar 

  2. Van Der Meer, F.: Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 5(1), 55–68 (2004)

    Google Scholar 

  3. Hege, E.K., O’Connell, D., Johnson, W., Basty, S., Dereniak, E.L.: Hyperspectral imaging for astronomy and space surveillance. In: Imaging Spectrometry IX, vol. 5159, pp. 380–391 (2004)

    Google Scholar 

  4. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)

    Article  Google Scholar 

  5. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2094–2107 (2014)

    Article  Google Scholar 

  6. Sharma, V., Diba, A., Tuytelaars, T., Van Gool, L.: Hyperspectral CNN for image classification & band selection, with application to face recognition. Technical report KUL/ESAT/PSI/1604, KU Leuven, ESAT, Leuven, Belgium (2016)

    Google Scholar 

  7. Hamida, A.B., Benoit, A., Lambert, P., Amar, C.B.: 3-D deep learning approach for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 56(8), 4420–4434 (2018)

    Article  Google Scholar 

  8. Zhong, Z., Li, J., Luo, Z., Chapman, M.: Spectral-spatial residual network for hyperspectral image classification: A 3-d deep learning framework. IEEE Trans. Geosci. Remote Sens. 56(2), 847–858 (2017)

    Article  Google Scholar 

  9. Zhang, H., Li, Y., Jiang, Y., Wang, P., Shen, Q., Shen, C.: Hyperspectral classification based on lightweight 3-d-cnn with transfer learning. IEEE Trans. Geosci. Remote Sens. 57(8), 5813–5828 (2019)

    Article  Google Scholar 

  10. Mei, X., et al.: Spectral-spatial attention networks for hyperspectral image classification. Remote Sens. 11(8), 963 (2019)

    Article  Google Scholar 

  11. Ma, W., Yang, Q., Wu, Y., Zhao, W., Zhang, X.: Double-branch multi-attention mechanism network for hyperspectral image classification. Remote Sens. 11(11), 1307 (2019)

    Article  Google Scholar 

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  13. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  14. Yuan, Y., Huang, L., Guo, J., Zhang, C., Chen, X., Wang, J.: Ocnet: object context network for scene parsing. arXiv preprint arXiv:1809.00916 (2018)

  15. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  16. Hong, D., et al.: Spectralformer: rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022)

    Article  Google Scholar 

  17. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision, pp. 3–19 (2018)

    Google Scholar 

  18. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  19. Zhong, C., Gong, N., Zhang, Z., Jiang, Y., Zhang, K.: Litecclknet: a lightweight criss-cross large kernel convolutional neural network for hyperspectral image classification. IET Computer Vision (2023)

    Google Scholar 

  20. Guo, M.H., Lu, C.Z., Liu, Z.N., Cheng, M.M., Hu, S.M.: Visual attention network. arXiv preprint arXiv:2202.09741 (2022)

  21. Chakraborty, T., Trehan, U.: Spectralnet: exploring spatial-spectral waveletcnn for hyperspectral image classification. arXiv preprint arXiv:2104.00341 (2021)

  22. Roy, S.K., Haut, J.M., Paoletti, M.E., Dubey, S.R., Plaza, A.: Generative adversarial minority oversampling for spectral-spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2021)

    Google Scholar 

  23. Li, R., Zheng, S., Duan, C., Yang, Y., Wang, X.: Classification of hyperspectral image based on double-branch dual-attention mechanism network. Remote Sens. 12(3), 582 (2020)

    Article  Google Scholar 

  24. Paoletti, M.E., Haut, J.M., Fernandez-Beltran, R., Plaza, J., Plaza, A.J., Pla, F.: Deep pyramidal residual networks for spectral-spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57(2), 740–754 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the Research Foundation of Education Department of Hunan Province of China under Grant No. 22A0371; the Graduate Research Project of Jishou University under Grant No. jdy22024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Z., Zhang, S., Song, H., Yan, Q. (2024). 3D Lightweight Spatial-Spectral Attention Network for Hyperspectral Image Classification. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14430. Springer, Singapore. https://doi.org/10.1007/978-981-99-8537-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8537-1_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8536-4

  • Online ISBN: 978-981-99-8537-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics