Skip to main content

SemanticCrop: Boosting Contrastive Learning via Semantic-Cropped Views

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14430))

Included in the following conference series:

  • 351 Accesses

Abstract

Siamese-structure-based contrastive learning has shown excellent performance in learning visual representations due to its ability to minimize the distance between positive pairs and increase the distance between negative pairs. Existing works mostly employ RandomCrop or ContrastiveCrop to obtain positive pairs of an image. However, RandomCrop causes the cropped views to contain many useless backgrounds, while ContrastiveCrop produces positive pairs that are too similar. In this paper, we propose a novel SemanticCrop to yield cropped views containing as much semantic information as possible. Specifically, SemanticCrop first computes a heatmap of an image. Then, an empirical threshold is tuned to box out a semantic region whose heatmap values are over this threshold. Finally, we design a center-suppressed probabilistic sampling to avoid excessive similarity between positive pairs, making the cropped view contain more parts of an object. As a plug-and-play module, the MoCo, SimCLR, SimSiam, and BYOL models equipped with our SemanticCrop module achieve an accuracy improvement from 0.5% to 2.34% on the CIFAR10, CIFAR100, IN-200, and IN-1K datasets. The code is available at https://github.com/GZHU-DVL/SemanticCrop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arora, S., Khandeparkar, H., Khodak, M., Plevrakis, O., Saunshi, N.: A theoretical analysis of contrastive unsupervised representation learning. arXiv preprint arXiv:1902.09229 (2019)

  2. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV, pp. 9650–9660 (2021)

    Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)

    Google Scholar 

  4. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  5. Chen, X., He, K.: Exploring simple Siamese representation learning. In: CVPR, pp. 15750–15758 (2021)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  7. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88, 303–338 (2010)

    Google Scholar 

  8. Faster, R.: Towards real-time object detection with region proposal networks. NeurIPS 9199(10.5555), 2969239–2969250 (2015)

    Google Scholar 

  9. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. NeurIPS 33, 21271–21284 (2020)

    Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  11. Khosla, P., et al.: Supervised contrastive learning. NeurIPS 33, 18661–18673 (2020)

    Google Scholar 

  12. Khosla, P., et al.: Supervised contrastive learning. NeurIPS 33, 18661–18673 (2020)

    Google Scholar 

  13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  14. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  15. Mishra, S., et al.: Object-aware cropping for self-supervised learning. arXiv preprint arXiv:2112.00319 (2021)

  16. Peng, X., Wang, K., Zhu, Z., Wang, M., You, Y.: Crafting better contrastive views for siamese representation learning. In: CVPR, pp. 16031–16040 (2022)

    Google Scholar 

  17. Peng, Y., He, X., Zhao, J.: Object-part attention model for fine-grained image classification. TIP 27(3), 1487–1500 (2017)

    Google Scholar 

  18. Purushwalkam, S., Gupta, A.: Demystifying contrastive self-supervised learning: invariances, augmentations and dataset biases. NeurIPS 33, 3407–3418 (2020)

    Google Scholar 

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. TPAMI 39(6), 1137–1149 (2017)

    Google Scholar 

  20. Selvaraju, R.R., Desai, K., Johnson, J., Naik, N.: Casting your model: learning to localize improves self-supervised representations. In: CVPR, pp. 11058–11067 (2021)

    Google Scholar 

  21. Shen, Z., Liu, Z., Liu, Z., Savvides, M., Darrell, T.: Rethinking image mixture for unsupervised visual representation learning (2020). 3(7), 8, arXiv preprint arXiv:2003.05438

  22. Sun, M., Yuan, Y., Zhou, F., Ding, E.: Multi-attention multi-class constraint for fine-grained image recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 834–850. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_49

    Chapter  Google Scholar 

  23. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45

    Chapter  Google Scholar 

  24. Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution discrepancy. NeurIPS 32, 8250–8260 (2019)

    Google Scholar 

  25. Xiao, T., Wang, X., Efros, A.A., Darrell, T.: What should not be contrastive in contrastive learning. arXiv preprint arXiv:2008.05659 (2020)

  26. Zhang, J., Wang, Y., Zhou, Z., Luan, T., Wang, Z., Qiao, Y.: Learning dynamical human-joint affinity for 3d pose estimation in videos. TIP 30, 7914–7925 (2021)

    Google Scholar 

  27. Zhu, R., Zhao, B., Liu, J., Sun, Z., Chen, C.W.: Improving contrastive learning by visualizing feature transformation. In: ICCV, pp. 10306–10315 (2021)

    Google Scholar 

  28. Zoph, B., et al.: Rethinking pre-training and self-training. NeurIPS 33, 3833–3845 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grants 62272116 and 62002075, in part by the Basic and Applied Basic Research Foundation of Guangdong Province under Grant 2023A1515011428, and in part by the Science and Technology Foundation of Guangzhou under Grant 2023A04J1723. The authors acknowledge the Network Center of Guangzhou University for providing HPC computing resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weixuan Tang or Yuan-Gen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, Y., Chen, Z., Tang, W., Wang, YG. (2024). SemanticCrop: Boosting Contrastive Learning via Semantic-Cropped Views. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14430. Springer, Singapore. https://doi.org/10.1007/978-981-99-8537-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8537-1_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8536-4

  • Online ISBN: 978-981-99-8537-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics