Skip to main content

Dynamic Multi-modal Prompting for Efficient Visual Grounding

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14431))

Included in the following conference series:

  • 393 Accesses

Abstract

Prompt tuning has emerged as a flexible approach for adapting pre-trained models by solely learning additional inputs while keeping the model parameters frozen. However, simplistic prompts are insufficient to effectively address the challenges posed by complex multi-modal tasks such as visual grounding. In this paper, we propose a novel prompting architecture called Dynamic Multi-modAl Prompting (DMAP) for visual grounding. DMAP incorporates input-dependent prompting to tailor instance-level prompts for more accurate representation and dynamic multi-modal prompting to capture the relationship between the textual and visual inputs. To this end, we design a Dynamic Prompt Network (DPN) to generate multi-modal prompts based on the specific inputs, enhancing both adaptive prompt generation and multi-modal feature fusion. Extensive experimental results demonstrate the superiority of DMAP over competing methods in parameter-efficient settings. Furthermore, DMAP consistently outperforms state-of-the-art VG methods even when fine-tuning all parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antol, S., et al.: VQA: visual question answering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2425–2433 (2015)

    Google Scholar 

  2. Bahng, H., Jahanian, A., Sankaranarayanan, S., Isola, P.: Exploring visual prompts for adapting large-scale models. arXiv preprint arXiv:2203.17274, vol. 1, no. 3, p. 4 (2022)

  3. Brown, T.B., et al.: Language models are few-shot learners. In: NeurIPS (2020)

    Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Chen, L., Ma, W., Xiao, J., Zhang, H., Chang, S.F.: Ref-NMS: breaking proposal bottlenecks in two-stage referring expression grounding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1036–1044 (2021)

    Google Scholar 

  6. Deng, J., Yang, Z., Chen, T., Zhou, W., Li, H.: TransVG: end-to-end visual grounding with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1769–1779 (2021)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hong, R., Liu, D., Mo, X., He, X., Zhang, H.: Learning to compose and reason with language tree structures for visual grounding. IEEE Trans. Pattern Anal. Mach. Intell. 44(2), 684–696 (2019)

    Article  Google Scholar 

  10. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: ICML. Proceedings of Machine Learning Research, vol. 97, pp. 2790–2799. PMLR (2019)

    Google Scholar 

  11. Hu, R., Rohrbach, M., Andreas, J., Darrell, T., Saenko, K.: Modeling relationships in referential expressions with compositional modular networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1115–1124 (2017)

    Google Scholar 

  12. Khattak, M.U., Rasheed, H., Maaz, M., Khan, S., Khan, F.S.: Maple: multi-modal prompt learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19113–19122 (2023)

    Google Scholar 

  13. Li, M., Chen, L., Duan, Y., Hu, Z., Feng, J., Zhou, J., Lu, J.: Bridge-prompt: towards ordinal action understanding in instructional videos. In: CVPR, pp. 19848–19857. IEEE (2022)

    Google Scholar 

  14. Li, X.L., Liang, P.: Prefix-tuning: optimizing continuous prompts for generation. In: ACL/IJCNLP (1), pp. 4582–4597. Association for Computational Linguistics (2021)

    Google Scholar 

  15. Li, Y., et al.: A deep learning-based hybrid framework for object detection and recognition in autonomous driving. IEEE Access 8, 194228–194239 (2020)

    Article  Google Scholar 

  16. Lialin, V., Deshpande, V., Rumshisky, A.: Scaling down to scale up: a guide to parameter-efficient fine-tuning. CoRR abs/2303.15647 (2023)

    Google Scholar 

  17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  18. Loedeman, J., Stol, M.C., Han, T., Asano, Y.M.: Prompt generation networks for efficient adaptation of frozen vision transformers. CoRR abs/2210.06466 (2022)

    Google Scholar 

  19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (Poster). OpenReview.net (2019)

    Google Scholar 

  20. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11–20 (2016)

    Google Scholar 

  21. Nagaraja, V.K., Morariu, V.I., Davis, L.S.: Modeling context between objects for referring expression understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 792–807. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_48

    Chapter  Google Scholar 

  22. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML. Proceedings of Machine Learning Research, vol. 139, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  23. Wu, W., Chang, T., Li, X.: Visual-and-language navigation: a survey and taxonomy. arXiv preprint arXiv:2108.11544 (2021)

  24. Yang, Z., Chen, T., Wang, L., Luo, J.: Improving one-stage visual grounding by recursive sub-query construction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_23

    Chapter  Google Scholar 

  25. Yang, Z., Gong, B., Wang, L., Huang, W., Yu, D., Luo, J.: A fast and accurate one-stage approach to visual grounding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4683–4693 (2019)

    Google Scholar 

  26. Yu, L., et al.: MAttNet: modular attention network for referring expression comprehension. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1307–1315 (2018)

    Google Scholar 

  27. Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_5

    Chapter  Google Scholar 

  28. Zhang, H., Niu, Y., Chang, S.F.: Grounding referring expressions in images by variational context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4158–4166 (2018)

    Google Scholar 

  29. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-language models. In: CVPR, pp. 16795–16804. IEEE (2022)

    Google Scholar 

  30. Zhou, Y., et al.: TRAR: routing the attention spans in transformer for visual question answering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2074–2084 (2021)

    Google Scholar 

Download references

Acknowledgement

This research was supported partially by the National Natural Science Fund of China (Grant Nos. 62306329, 62103420, 62103425 and 62103428) and the Natural Science Fund of Hunan Province (Grant Nos. 2021JJ40697, 2021JJ40702, 2022JJ40559 and 2023JJ40676), and Hunan Provincial Innovation Foundation For Postgraduate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, W., Liu, T., Wang, Y., Xu, K., Yin, Q., Hu, Y. (2024). Dynamic Multi-modal Prompting for Efficient Visual Grounding. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14431. Springer, Singapore. https://doi.org/10.1007/978-981-99-8540-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8540-1_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8539-5

  • Online ISBN: 978-981-99-8540-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics