Abstract
Attention mechanisms have provided benefits in very many visual tasks, e.g. image classification, object detection, semantic segmentation. However, few attention modules have been proposed specifically for scene text detection. We propose an attention mechanism based on Quantum-State-based Mapping (QSM) that enhances channel and spatial attention, introduces higher-order representations, and mixes contextual information. Our approach includes two attention modules: Quantum-based Convolutional Attention Module (QCAM), a plug-and-play module applicable to pre-trained text detection models; Adaptive Channel Information Transfer Module (ACTM), which replaces feature pyramids and complex networks of DBNet++ with a 35.9% reduction in FLOPs. In CNN-based methods, our QCAM achieves state-of-the-art performance on three benchmarks. Remarkably, when compared to the Transformer-based methods such as FSG, our QCAM remains competitive in F-measure on all benchmarks. Notably, QCAM has a 29.5% reduction in parameters compared to FSG, resulting in a balance between detection accuracy and efficiency. ACTM significantly improves F-measure over DBNet++ on three benchmarks, providing an alternative to feature pyramids in scene text detection. The codes, models and training logs are available at https://github.com/yws-wxs/QCAM.
H. Wu and J. Zhou—Contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chen, L., et al.: SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning. In: CVPR, pp. 6298–6306 (2017)
Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., Sun, J.: You only look one-level feature. In: CVPR, pp. 13034–13043 (2021)
Ch’ng, C.K., Chan, C.S.: Total-Text: A comprehensive dataset for scene text detection and recognition. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 935–942 (2017)
Du, B., Ye, J., Zhang, J., Liu, J., Tao, D.: I3CL: intra-and inter-instance collaborative learning for arbitrary-shaped scene text detection. IJCV 130(8), 1961–1977 (2022)
Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in natural images. In: CVPR, pp. 2315–2324 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1156–1160 (2015)
Kuang, Z., et al.: MMOCR: a comprehensive toolbox for text detection, recognition and understanding. In: Proceedings of the 29th ACM International Conference on Multimedia, MM ’21, pp. 3791–3794. Association for Computing Machinery, New York (2021)
Liao, M., Wan, Z., Yao, C., Chen, K., Bai, X.: Real-time scene text detection with differentiable binarization. In: AAAI, vol. 34, pp. 11474–11481 (2020)
Liao, M., Zou, Z., Wan, Z., Yao, C., Bai, X.: Real-time scene text detection with differentiable binarization and adaptive scale fusion. TPAMI 45(1), 919–931 (2023)
Lin, T.Y., Dollár P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 936–944 (2017)
Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Liu, Y., Chen, H., Shen, C., He, T., Jin, L., Wang, L.: ABCNet: real-time scene text spotting with adaptive bezier-curve network. In: CVPR, pp. 9806–9815 (2020)
Liu, Y., Jin, L., Zhang, S., Luo, C., Zhang, S.: Curved scene text detection via transverse and longitudinal sequence connection. Pattern Recogn. 90, 337–345 (2019)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. TPAMI 39(6), 1137–1149 (2017)
Tang, J., et al.: Few could be better than all: feature sampling and grouping for scene text detection. In: CVPR, pp. 4553–4562 (2022)
Tolstikhin, I.O., et al.: MLP-Mixer: an all-MLP architecture for vision. In: NeurIPS, vol. 34, pp. 24261–24272 (2021)
Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010. Curran Associates Inc., Red Hook (2017)
Wang, F., Chen, Y., Wu, F., Li, X.: TextRay: contour-based geometric modeling for arbitrary-shaped scene text detection. In: Proceedings of the 28th ACM International Conference on Multimedia, MM ’20, pp. 111–119. Association for Computing Machinery, New York (2020)
Wang, H., et al.: All you need is boundary: toward arbitrary-shaped text spotting. In: AAAI, vol. 34, pp. 12160–12167 (2020)
Wang, W., et al.: Shape robust text detection with progressive scale expansion network. In: CVPR, pp. 9328–9337 (2019)
Wang, Y., Xie, H., Zha, Z.J., Xing, M., Fu, Z., Zhang, Y.: ContourNet: taking a further step toward accurate arbitrary-shaped scene text detection. In: CVPR, pp. 11750–11759 (2020)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Zhang, J., et al.: An application of quantum mechanics to attention methods in computer vision. In: ICASSP, pp. 1–5 (2023)
Zhang, S.X., et al.: Deep relational reasoning graph network for arbitrary shape text detection. In: CVPR, pp. 9696–9705 (2020)
Zhu, Y., Chen, J., Liang, L., Kuang, Z., Jin, L., Zhang, W.: Fourier contour embedding for arbitrary-shaped text detection. In: CVPR, pp. 3122–3130 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wu, H. et al. (2024). A Quantum-Based Attention Mechanism in Scene Text Detection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14432. Springer, Singapore. https://doi.org/10.1007/978-981-99-8543-2_1
Download citation
DOI: https://doi.org/10.1007/978-981-99-8543-2_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8542-5
Online ISBN: 978-981-99-8543-2
eBook Packages: Computer ScienceComputer Science (R0)