Skip to main content

Learning Domain-Invariant Representations from Text for Domain Generalization

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14432))

Included in the following conference series:

  • 743 Accesses

Abstract

Domain generalization (DG) aims to transfer the knowledge learned in the source domain to the unseen target domain. Most DG methods focus on studying how to learn domain-invariant representations that remain invariant across different domains. For humans, we tend to use the same word or text to describe images from different domains but of the same category. Therefore, text can be considered a natural domain-invariant representation. Inspired by this, this paper studies how to introduce text representations into domain generalization tasks. Specifically, the text representations generated by CLIP text encoder are used to guide the image representation learning of the visual model. To alleviate domain bias and weak discriminability caused by CLIP representations, a joint loss is proposed by combining the text representation regularization loss with standard image-level supervised loss. The proposed method is simple yet efficient, and can achieve competitive performance compared with the existing state-of-the-art methods on five standard DG datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 472–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_28

    Chapter  Google Scholar 

  2. Bui, M.H., Tran, T., Tran, A., Phung, D.: Exploiting domain-specific features to enhance domain generalization. In: Advances in Neural Information Processing Systems, vol. 34, pp. 21189–21201 (2021)

    Google Scholar 

  3. Cha, J., et al.: Swad: domain generalization by seeking flat minima. In: Advances in Neural Information Processing Systems, vol. 34, pp. 22405–22418 (2021)

    Google Scholar 

  4. Cha, J., Lee, K., Park, S., Chun, S.: Domain generalization by mutual-information regularization with pre-trained models. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13683, pp. 440–457. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20050-2_26

    Chapter  Google Scholar 

  5. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  6. Fang, C., Xu, Y., Rockmore, D.N.: Unbiased metric learning: on the utilization of multiple datasets and web images for softening bias. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1657–1664 (2013)

    Google Scholar 

  7. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: International Conference on Learning Representations (2020)

    Google Scholar 

  8. Kim, D., Yoo, Y., Park, S., Kim, J., Lee, J.: Selfreg: self-supervised contrastive regularization for domain generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9619–9628 (2021)

    Google Scholar 

  9. Krueger, D., et al.: Out-of-distribution generalization via risk extrapolation (rex). In: International Conference on Machine Learning, pp. 5815–5826. PMLR (2021)

    Google Scholar 

  10. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)

    Google Scholar 

  11. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2018)

    Google Scholar 

  12. Li, L., et al.: Progressive domain expansion network for single domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 224–233 (2021)

    Google Scholar 

  13. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  14. Min, S., Park, N., Kim, S., Park, S., Kim, J.: Grounding visual representations with texts for domain generalization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13697, pp. 37–53. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_3

    Chapter  Google Scholar 

  15. Nam, H., Lee, H., Park, J., Yoon, W., Yoo, D.: Reducing domain gap by reducing style bias. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8690–8699 (2021)

    Google Scholar 

  16. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1406–1415 (2019)

    Google Scholar 

  17. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  18. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  19. Shi, Y., et al.: Gradient matching for domain generalization. arXiv preprint arXiv:2104.09937 (2021)

  20. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  21. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1999). https://doi.org/10.1007/978-1-4757-3264-1

    Book  Google Scholar 

  22. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  23. Wang, Z., Wu, Z., Agarwal, D., Sun, J.: Medclip: contrastive learning from unpaired medical images and text. arXiv preprint arXiv:2210.10163 (2022)

  24. Yao, X., et al.: PCL: proxy-based contrastive learning for domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7097–7107 (2022)

    Google Scholar 

  25. Zhang, M., Marklund, H., Dhawan, N., Gupta, A., Levine, S., Finn, C.: Adaptive risk minimization: a meta-learning approach for tackling group distribution shift (2020)

    Google Scholar 

  26. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. In: International Conference on Learning Representations (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 62373324, 62271448 and U20A20171), in part by Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LGF22F030016 and LY21F020027), and in part Key Programs for Science and Technology Development of Zhejiang Province (2022C03113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haigen Hu or Mingfeng Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Hu, H., Chen, Q., Zhou, Q., Jiang, M. (2024). Learning Domain-Invariant Representations from Text for Domain Generalization. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14432. Springer, Singapore. https://doi.org/10.1007/978-981-99-8543-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8543-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8542-5

  • Online ISBN: 978-981-99-8543-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics