Skip to main content

ELFLN: An Efficient Lightweight Facial Landmark Network Based on Hybrid Knowledge Distillation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14432))

Included in the following conference series:

  • 285 Accesses

Abstract

A facial landmark detector based on coordinate regression has minimal parameters and memory consumption, making it suitable for deployment on mobile devices. Typically, it employs a lightweight network as the backbone, but this network is not capable of effectively extracting features. Knowledge distillation is a promising methodology for developing a precise and lightweight network. The existing lightweight student networks do not have corresponding teacher networks, thereby hindering their ability to leverage the knowledge distillation technique. To tackle the inefficiency of the lightweight network in extracting features, we present an efficient lightweight network in this study, named ELFLN. In addition, we propose a novel hybrid knowledge distillation (HKD) framework to address the problem that the inadequacy of the lightweight network in carrying out features knowledge distillation. Finally, we augment our ELFLN by integrating facial landmark detection with head pose estimation, thereby enhancing the network generalization capability. To verify the efficacy of our proposed approach, we perform comprehensive experiments on 300W and WFLW datasets, achieving NME reach of 3.20% on 300W and 4.12% on WFLW with ELFLN+HKD. The number of parameters of ELFLN is observed to reduce by 62%, and FLOPs diminish by 87% compared to state-of-the-art SLPT.

Supported by Shandong Province Key R &D Program (Major Science and Technology Innovation Project) Project under Grants 2020CXGC010102.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., Zhou, Q.: Look at boundary: a boundary-aware face alignment algorithm. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2138 (2018)

    Google Scholar 

  2. Xia, J., Qu, W., Huang, W., Zhang, J., Wang, X., Xu, M.: Sparse local patch transformer for robust face alignment and landmarks inherent relation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4052–4061 (2022)

    Google Scholar 

  3. Huang, Y., Yang, H., Li, C., Kim, J., Wei, F.: Adnet: leveraging error-bias towards normal direction in face alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3080–3090 (2021)

    Google Scholar 

  4. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 2(7) (2015)

  5. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activation boundaries formed by hidden neurons. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3779–3787 (2019)

    Google Scholar 

  6. Kim, J., Park, S., Kwak, N.: Paraphrasing complex network: Network compression via factor transfer. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  7. Zhang, F., Zhu, X., Ye, M.: Fast human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3517–3526 (2019)

    Google Scholar 

  8. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  9. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  10. Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., Urtasun, R.: Multinet: real-time joint semantic reasoning for autonomous driving. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1013–1020. IEEE (2018)

    Google Scholar 

  11. Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J., Savarese, S.: Which tasks should be learned together in multi-task learning? In: International Conference on Machine Learning, pp. 9120–9132. PMLR (2020)

    Google Scholar 

  12. Hempel, T., Abdelrahman, A.A., Al-Hamadi, A.: 6D rotation representation for unconstrained head pose estimation. arXiv preprint arXiv:2202.12555 (2022)

  13. Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., Van Gool, L.: Multi-task learning for dense prediction tasks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3614–3633 (2021)

    Google Scholar 

  14. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 397–403 (2013)

    Google Scholar 

  15. Qian, S., Sun, K., Wu, W., Qian, C., Jia, J.: Aggregation via separation: boosting facial landmark detector with semi-supervised style translation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10153–10163 (2019)

    Google Scholar 

  16. Wang, X., Bo, L., Fuxin, L.: Adaptive wing loss for robust face alignment via heatmap regression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6971–6981 (2019)

    Google Scholar 

  17. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349–3364 (2020)

    Article  Google Scholar 

  18. Lin, C., et al.: Structure-coherent deep feature learning for robust face alignment. IEEE Trans. Image Process. 30, 5313–5326 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, S., Wang, Y., Bian, H., Lu, Q. (2024). ELFLN: An Efficient Lightweight Facial Landmark Network Based on Hybrid Knowledge Distillation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14432. Springer, Singapore. https://doi.org/10.1007/978-981-99-8543-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8543-2_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8542-5

  • Online ISBN: 978-981-99-8543-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics