Skip to main content

Space-Transform Margin Loss with Mixup for Long-Tailed Visual Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14432))

Included in the following conference series:

  • 283 Accesses

Abstract

In the real world, naturally collected data often exhibits a long-tailed distribution, where the head classes have a larger number of samples compared to the tail classes. This long-tailed data distribution often introduces a bias in classification results, leading to incorrect classifications that harm the tail classes. Mixup is a simple but effective data augmentation method that transforms data into a new shrinking space, resulting in a regularization effect that is beneficial for classification. Therefore, many researchers consider using Mixup to promote the performance of long-tailed learning. However, these methods do not consider the special space transformation of data caused by Mixup in long-tail learning. In this paper, we present the Space-Transform Margin (STM) loss function, which offers a novel approach to dynamically adjusting the margin between classes by leveraging the shrinking strength introduced by Mixup. In this way, the margin of data can adapt to the special space transformation of Mixup. In the experiments, our solution achieves state-of-the-art performance on benchmark datasets, including CIFAR10-LT, CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  3. Van Horn, G., et al.: The inaturalist species classification and detection dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8769–8778 (2018)

    Google Scholar 

  4. Van Horn, G., Perona, P.: The devil is in the tails: fine-grained classification in the wild. arXiv preprint arXiv:1709.01450 (2017)

  5. Tan, J., et al.: Equalization loss for long-tailed object recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11662–11671 (2020)

    Google Scholar 

  6. Tang, K., Huang, J., Zhang, H.: Long-tailed classification by keeping the good and removing the bad momentum causal effect. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1513–1524 (2020)

    Google Scholar 

  7. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  8. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9719–9728 (2020)

    Google Scholar 

  9. Chou, H.-P., Chang, S.-C., Pan, J.-Y., Wei, W., Juan, D.-C.: Remix: rebalanced mixup. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12540, pp. 95–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65414-6_9

    Chapter  Google Scholar 

  10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  11. Xu, Z., Chai, Z., Yuan, C.: Towards calibrated model for long-tailed visual recognition from prior perspective. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  12. Zhong, Z., Cui, J., Liu, S., Jia, J.: Improving calibration for long-tailed recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16489–16498 (2021)

    Google Scholar 

  13. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217 (2019)

  14. Ren, J., Yu, C., Ma, X., Zhao, H., Yi, S., et al.: Balanced meta-softmax for long-tailed visual recognition. In: Advances in Neural Information Processing Systems, vol. 33, pp. 4175–4186 (2020)

    Google Scholar 

  15. Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S.: Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314 (2020)

  16. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  17. Galdran, A., Carneiro, G., González Ballester, M.A.: Balanced-mixup for highly imbalanced medical image classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 323–333. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_31

    Chapter  Google Scholar 

  18. Carratino, L., Cissé, M., Jenatton, R., Vert, J.P.: On mixup regularization. arXiv preprint arXiv:2006.06049 (2020)

  19. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: International Conference on Machine Learning, pp. 6438–6447. PMLR (2019)

    Google Scholar 

  20. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  21. Chapelle, O., Weston, J., Bottou, L., Vapnik, V.: Vicinal risk minimization. In: Advances in Neural Information Processing Systems, vol. 13 (2000)

    Google Scholar 

  22. Guo, H., Mao, Y., Zhang, R.: Mixup as locally linear out-of-manifold regularization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3714–3722 (2019)

    Google Scholar 

  23. Elsayed, G., Krishnan, D., Mobahi, H., Regan, K., Bengio, S.: Large margin deep networks for classification. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  24. Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification. IEEE Sig. Process. Lett. 25, 926–930 (2018)

    Article  Google Scholar 

  25. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. arXiv preprint arXiv:1612.02295 (2016)

  26. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)

    Google Scholar 

  27. Wang, J., et al.: Seesaw loss for long-tailed instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9695–9704 (2021)

    Google Scholar 

  28. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. In: International Conference on Machine Learning, pp. 4334–4343. PMLR (2018)

    Google Scholar 

  29. He, Z., Xie, L., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Data augmentation revisited: rethinking the distribution gap between clean and augmented data. arXiv preprint arXiv:1909.09148 (2019)

  30. Zhang, Y., Wei, X.S., Zhou, B., Wu, J.: Bag of tricks for long-tailed visual recognition with deep convolutional neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3447–3455 (2021)

    Google Scholar 

  31. Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)

  32. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

    Google Scholar 

  33. Chen, X., et al.: Imagine by reasoning: a reasoning-based implicit semantic data augmentation for long-tailed classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 356–364 (2022)

    Google Scholar 

  34. Du, F., Yang, P., Jia, Q., Nan, F., Chen, X., Yang, Y.: Global and local mixture consistency cumulative learning for long-tailed visual recognitions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15814–15823 (2023)

    Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for their helpful comments. This work is supported by the National Key R &D Program of China (2020AAA0107000) and Postgraduate Research & Practice Innovation Program of NUAA (xcxjh20221611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, F., Chen, X., Ye, H. (2024). Space-Transform Margin Loss with Mixup for Long-Tailed Visual Recognition. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14432. Springer, Singapore. https://doi.org/10.1007/978-981-99-8543-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8543-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8542-5

  • Online ISBN: 978-981-99-8543-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics