Skip to main content

Federated Learning Based on Diffusion Model to Cope with Non-IID Data

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14433))

Included in the following conference series:

  • 562 Accesses

Abstract

Federated learning is a distributed machine learning paradigm that allows model training without centralizing sensitive data in a single place. However, non independent and identical distribution (non-IID) data can lead to degraded learning performance in federated learning. Data augmentation schemes have been proposed to address this issue, but they often require sharing clients’ original data, which poses privacy risks. To address these challenges, we propose FedDDA, a data augmentation-based federated learning architecture that uses diffusion models to generate data conforming to the global class distribution and alleviate the non-IID data problem. In FedDDA, a diffusion model is trained through federated learning and then used for data augmentation, thus mitigating the degree of non-IID data without disclosing clients’ original data. Our experiments on non-IID settings with various configurations show that FedDDA significantly outperforms FedAvg, with up to 43.04% improvement on the Cifar10 dataset and up to 20.05% improvement on the Fashion-MNIST dataset. Additionally, we find that relatively low-quality generated samples that conform to the global class distribution still improve federated learning performance considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  2. Zhu, H., Jinjin, X., Liu, S., Jin, Y.: Federated learning on non-IID data: a survey. Neurocomputing 465, 371–390 (2021)

    Article  Google Scholar 

  3. Li, Q., Diao, Y., Chen, Q., He, B.: Federated learning on non-IID data silos: an experimental study. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 965–978. IEEE (2022)

    Google Scholar 

  4. Palihawadana, C., Wiratunga, N., Wijekoon, A., Kalutarage, H.: FedSim: similarity guided model aggregation for federated learning. Neurocomputing 483, 432–445 (2022)

    Article  Google Scholar 

  5. Xin, B., et al.: Federated synthetic data generation with differential privacy. Neurocomputing 468, 1–10 (2022)

    Article  Google Scholar 

  6. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7611–7623 (2020)

    Google Scholar 

  7. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: Proceedings of Machine Learning and Systems, vol. 2, pp. 429–450 (2020)

    Google Scholar 

  8. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: SCAFFOLD: stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143. PMLR (2020)

    Google Scholar 

  9. Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: Federated distillation and augmentation under non-IID private data. arXiv preprint arXiv:1811.11479 (2018)

  10. Qiong, W., Chen, X., Zhou, Z., Zhang, J.: FedHome: cloud-edge based personalized federated learning for in-home health monitoring. IEEE Trans. Mob. Comput. 21(8), 2818–2832 (2020)

    Google Scholar 

  11. Duan, M., Liu, D., Chen, X., Liu, R., Tan, Y., Liang, L.: Self-balancing federated learning with global imbalanced data in mobile systems. IEEE Trans. Parallel Distrib. Syst. 32(1), 59–71 (2020)

    Article  Google Scholar 

  12. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data. arXiv preprint arXiv:1806.00582 (2018)

  13. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  14. van den Berg, R., Bottou, L., Kohler, J., Gans, A.: Denoising diffusion implicit models. In: International Conference on Learning Representations (2021)

    Google Scholar 

  15. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794 (2021)

    Google Scholar 

  16. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  17. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  18. Mirza, M., Osindero, S.: Conditional generative adversarial nets. Comput. Vis. Image Underst. 150, 145–153 (2014)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  20. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  21. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  22. Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K., Hoang, N., Khazaeni, Y.: Bayesian nonparametric federated learning of neural networks. In: International Conference on Machine Learning, pp. 7252–7261. PMLR (2019)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778 (2016)

    Google Scholar 

  25. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Z., Yang, F., Liang, G. (2024). Federated Learning Based on Diffusion Model to Cope with Non-IID Data. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14433. Springer, Singapore. https://doi.org/10.1007/978-981-99-8546-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8546-3_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8545-6

  • Online ISBN: 978-981-99-8546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics