Skip to main content

Fine-Grain Classification Method of Non-small Cell Lung Cancer Based on Progressive Jigsaw and Graph Convolutional Network

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14433))

Included in the following conference series:

  • 395 Accesses

Abstract

The classification of non-small cell lung cancer (NSCLC) is a challenging task that faces two main problems that limit its performance. The first is that the feature regions used to discriminate NSCLC types are usually scattered, requiring classification models with the ability to accurately locate these feature regions and capture contextual information. Secondly, there are a large number of redundant regions in NSCLC pathology images that interfere with classification, but existing classification methods make it difficult to deal with them effectively. To solve these problems, we propose a fine-grained classification network, Progressive Jigsaw and Graph Convolutional Network (PJGC-Net). The network consists of two modules. For the first problem, we designed the GCN-Based multi-scale puzzle generation (GMPG) module to achieve fine-grained learning by training separate networks for different scale images, which can help the network identify and localize feature regions used to discriminate NSCLC types as well as their contextual information. For the second problem, we propose the jigsaw supervised progressive training (JSPT) module, which removes a large number of redundant regions and helps the proposed model focus on the effective discriminative regions. Our experimental results and visualization results on the LC25000 dataset demonstrate the feasibility of this method, and our method consistently outperforms other existing classification methods.

This work was supported by the National Natural Science Foundation of China (No. 62062057).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Subramanian, V., Do, M.N., Syeda-Mahmood, T.: Multimodal fusion of imaging and genomics for lung cancer recurrence prediction. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 804–808. IEEE, Iowa City (2020)

    Google Scholar 

  2. Qiu, Z., Bi, J., Gazdar, A.F., Song, K.: Genome-wide copy number variation pattern analysis and a classification signature for non-small cell lung cancer. Genes Chromosom. Cancer 56, 559–569 (2017)

    Article  Google Scholar 

  3. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2424–2433. IEEE, Las Vegas (2016)

    Google Scholar 

  4. Xu, Z., Ren, H., Zhou, W., Liu, Z.: ISANET: non-small cell lung cancer classification and detection based on CNN and attention mechanism. Biomed. Signal Process. Control 77, 103773 (2022)

    Article  Google Scholar 

  5. Du, R., et al.: Fine-grained visual classification via progressive multi-granularity training of jigsaw patches. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 153–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_10

    Chapter  Google Scholar 

  6. Velikovi, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv: 1710.10903 (2017)

  7. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv: 1609.02907 (2016)

  8. Zhang, T., Chang, D., Ma, Z., Guo, J.: Progressive co-attention network for fine-grained visual classification. In: 2021 International Conference on Visual Communications and Image Processing (VCIP), pp. 1–5. IEEE, Munich (2021)

    Google Scholar 

  9. Zheng, M., et al.: Progressive training of a two-stage framework for video restoration. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1023–1030. IEEE, New Orleans (2022)

    Google Scholar 

  10. Lei, J., Duan, J., Wu, F., Ling, N., Hou, C.: Fast mode decision based on grayscale similarity and inter-view correlation for depth map coding in 3D-HEVC. IEEE Trans. Circuits Syst. Video Technol. 28, 706–718 (2018)

    Article  Google Scholar 

  11. Huang, S., Xu, Z., Tao, D., Zhang, Y.: Part-stacked CNN for fine-grained visual categorization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1173–1182. IEEE, Las Vegas (2016)

    Google Scholar 

  12. Zheng, H., Fu, J., Mei, T., Luo, J.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5219–5227. IEEE, Venice (2017)

    Google Scholar 

  13. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1449–1457. IEEE, Santiago (2015)

    Google Scholar 

  14. Chang, D., et al.: The devil is in the channels: mutual-channel loss for fine-grained image classification. IEEE Trans. Image Process. 29, 4683–4695 (2020)

    Article  Google Scholar 

  15. Chang, D., Zheng, Y., Ma, Z., Du, R., Liang, K.: Fine-grained visual classification via simultaneously learning of multi-regional multi-grained features. arXiv preprint arXiv: 2102.00367 (2021)

  16. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992–10002. IEEE, Montreal (2021)

    Google Scholar 

  17. Liu, Z., et al.: Swin Transformer V2: scaling up capacity and resolution. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11999–12009. IEEE, New Orleans (2022)

    Google Scholar 

  18. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626. IEEE, Venice (2017)

    Google Scholar 

  19. Li, Y., Lao, L., Cui, Z., Shan, S., Yang, J.: Graph jigsaw learning for cartoon face recognition. IEEE Trans. Image Process. 31, 3961–3972 (2022)

    Article  Google Scholar 

  20. Wu, Y., Ma, J., Huang, X., Ling, S.H., Su, S.W.: DeepMMSA: a novel multimodal deep learning method for non-small cell lung cancer survival analysis. In: 2021 IEEE International Conference on Systems. Man, and Cybernetics (SMC), pp. 1468–1472. IEEE, Melbourne (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Z., Jia, W. (2024). Fine-Grain Classification Method of Non-small Cell Lung Cancer Based on Progressive Jigsaw and Graph Convolutional Network. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14433. Springer, Singapore. https://doi.org/10.1007/978-981-99-8546-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8546-3_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8545-6

  • Online ISBN: 978-981-99-8546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics