Skip to main content

CAWNet: A Channel Attention Watermarking Attack Network Based on CWABlock

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14433))

Included in the following conference series:

  • 405 Accesses

Abstract

In recent years, watermarking technology has been widely used as a common information hiding technique in the fields of copyright protection, authentication, and data privacy protection in digital media. However, the development of watermark attack techniques has lagged behind. Improving the efficiency of watermark attack techniques and effectively attacking watermarks has become an urgent problem to be solved. Therefore, this paper proposes a watermark attack network called CAWNet. Firstly, this paper designs a convolution-based watermark attack module (CWABlock), which introduces channel attention mechanism. By replacing fully connected layers with global average pooling layers, the parameter quantity of the network is reduced and the computational efficiency is improved, enabling effective attacks on watermark information. Secondly, in the training phase, we utilize a large-scale real-world image dataset for training and employ data augmentation strategies to enhance the robustness of the network. Finally, we conduct ablation experiments on CWABlock, attention mechanism, and other modules, as well as comparative experiments on different watermark attack methods. The experimental results demonstrate significant improvements in the effectiveness of the proposed watermark attack approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanha, M., Torshizi, S.D.S., Abdullah, M.T., Hashim, F.: An overview of attacks against digital watermarking and their respective countermeasures. In: Proceedings Title: 2012 International Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), pp. 265–270. IEEE (2012)

    Google Scholar 

  2. Kadian, P., Arora, S.M., Arora, N.: Robust digital watermarking techniques for copyright protection of digital data: a survey. Wireless Pers. Commun. 118, 3225–3249 (2021)

    Article  Google Scholar 

  3. Qian, Z., Zhang, X.: Reversible data hiding in encrypted images with distributed source encoding. IEEE Trans. Circuits Syst. Video Technol. 26(4), 636–646 (2015)

    Article  Google Scholar 

  4. Li, Q., et al.: Concealed attack for robust watermarking based on generative model and perceptual loss. IEEE Trans. Circuits Syst. Video Technol. 32(8), 5695–5706 (2021)

    Article  Google Scholar 

  5. Xiao, B., Luo, J., Bi, X., Li, W., Chen, B.: Fractional discrete tchebyshev moments and their applications in image encryption and watermarking. Inf. Sci. 516, 545–559 (2020)

    Article  MathSciNet  Google Scholar 

  6. Rohilla, T., Kumar, M., Kumar, R.: Robust digital image watermarking in YCbCr color space using hybrid method. Inf. Technol. Ind. 9(1), 1200–1204 (2021)

    Google Scholar 

  7. Wang, H., et al.: Detecting aligned double jpeg compressed color image with same quantization matrix based on the stability of image. IEEE Trans. Circuits Syst. Video Technol. 32(6), 4065–4080 (2021)

    Article  Google Scholar 

  8. Cheddad, A., Condell, J., Curran, K., Mc Kevitt, P.: Digital image steganography: survey and analysis of current methods. Signal Process. 90(3), 727–752 (2010)

    Article  Google Scholar 

  9. Agarwal, N., Singh, A.K., Singh, P.K.: Survey of robust and imperceptible watermarking. Multimedia Tools Appl. 78, 8603–8633 (2019)

    Article  Google Scholar 

  10. Guo, M.-H., et al.: Attention mechanisms in computer vision: a survey. Comput. Vis. Media 8(3), 331–368 (2022)

    Article  MathSciNet  Google Scholar 

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  12. Wang, C., Wang, X., Li, Y., Xia, Z., Zhang, C.: Quaternion polar harmonic fourier moments for color images. Inf. Sci. 450, 141–156 (2018)

    Article  MathSciNet  Google Scholar 

  13. Wang, C., Wang, X., Zhang, C., Xia, Z.: Geometric correction based color image watermarking using fuzzy least squares support vector machine and Bessel K form distribution. Signal Process. 134, 197–208 (2017)

    Article  Google Scholar 

  14. Wang, C., et al.: RD-IWAN: residual dense based imperceptible watermark attack network. IEEE Trans. Circuits Syst. Video Technol. 32(11), 7460–7472 (2022)

    Article  Google Scholar 

  15. Geng, L., Zhang, W., Chen, H., Fang, H., Yu, N.: Real-time attacks on robust watermarking tools in the wild by CNN. J. Real-Time Image Proc. 17, 631–641 (2020)

    Article  Google Scholar 

  16. Hatoum, M.W., Couchot, J.-F., Couturier, R., Darazi, R.: Using deep learning for image watermarking attack. Signal Process. Image Commun. 90, 116019 (2021)

    Article  Google Scholar 

  17. Wang, C., et al.: CWAN: covert watermarking attack network. Electronics 12(2), 303 (2023)

    Article  Google Scholar 

  18. Voloshynovskiy, S., Pereira, S., Iquise, V., Pun, T.: Attack modelling: towards a second generation watermarking benchmark. Signal Process. 81(6), 1177–1214 (2001)

    Article  Google Scholar 

  19. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111, 98–136 (2015)

    Article  Google Scholar 

  20. Korhonen, J., You, J.: Peak signal-to-noise ratio revisited: Is simple beautiful? In: 2012 Fourth International Workshop on Quality of Multimedia Experience, pp. 37–38. IEEE (2012)

    Google Scholar 

  21. Jeruchim, M.: Techniques for estimating the bit error rate in the simulation of digital communication systems. IEEE J. Sel. Areas Commun. 2(1), 153–170 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Taishan Scholar Program of Shandong (tsqn202306251); Youth Innovation Team of Colleges and Universities in Shandong Province (2022KJ124); National Natural Science Foundation of China (62302249, 62272255, 62302248); The “Chunhui Plan” Cooperative Scientific Research Project of Ministry of Education (HZKY20220482); National Key Research and Development Program of China (2021YFC3340602); Shandong Provincial Natural Science Foundation (ZR2023QF032, ZR2022LZH011, ZR2023QF018, ZR2020MF054); Ability Improvement Project of Science and technology SMES in Shandong Province (2023TSGC0217, 2022TSGC2485); Project of Jinan Research Leader Studio (2020GXRC056); Project of Jinan Introduction of Innovation Team (202228016); Science, Education and Industry Integration Project (2023PY060, 2023PX071, 2023PX006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Tian, P., Wei, Z., Li, Q., Xia, Z., Ma, B. (2024). CAWNet: A Channel Attention Watermarking Attack Network Based on CWABlock. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14433. Springer, Singapore. https://doi.org/10.1007/978-981-99-8546-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8546-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8545-6

  • Online ISBN: 978-981-99-8546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics