Skip to main content

Deep Arbitrary-Scale Unfolding Network for Color-Guided Depth Map Super-Resolution

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

Although color-guided Depth map Super-Resolution (DSR) task has made great progress with the help of deep learning, this task still suffers from some issues: 1) many DSR networks are short of good interpretability; 2) most of the popular DSR methods cannot achieve arbitrary-scale up-sampling for practical applications; 3) dual-modality gaps between color image and depth map may give rise to texture-copying problem. As for these problems, we build a new joint optimization model for two tasks of high-low frequency decomposition and arbitrary-scale DSR. According to alternatively-iterative update formulas of the solution for these two tasks, the proposed model is unfolded as Deep Arbitrary-Scale Unfolding Network (DASU-Net). In the DASU-Net, we propose a Continuous Up-Sampling Fusion (CUSF) module to address two problems of arbitrary-scale feature up-sampling and dual-modality inconsistency during color-depth feature fusion. A large number of experiments have demonstrated that the proposed DASU-Net achieves more significant reconstruction results as compared with several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barron, J.T., Poole, B.: The fast bilateral solver. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision ?C ECCV 2016. pp. 617C632. Springer International Publishing, Cham (2016)

    Google Scholar 

  2. Diebel, J., Thrun, S.: An application of markov random fields to range sensing. In: Proceedings of the 18th International Conference on Neural Information Processing Systems. p. 291298. NIPS05, MIT Press, Cambridge, MA, USA (2005)

    Google Scholar 

  3. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(6), 1397 C1409 (2013). https://doi.org/10.1109/TPAMI.2012.213

  4. Hui, T.W., Loy, C.C., Tang, X.: Depth map super-resolution by deep multi-scale guidance. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision C ECCV 2016. pp. 353C369. Springer International Publishing, Cham (2016)

    Google Scholar 

  5. Kim, B., Ponce, J., Ham, B.: Deformable kernel networks for joint image filtering. International Journal of Computer Vision 129(2), 579 C 600 (2021), https://doi.org/10.1007/s11263-020-01386-z

  6. Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. In: ACM SIGGRAPH 2007 Papers. SIGGRAPH 07, Association for Computing Machinery, New York, NY, USA (2007)

    Google Scholar 

  7. Li, Y., Huang, J.B., Ahuja, N., Yang, M.H.: Joint image filtering with deep convolutional networks. IEEE transactions on pattern analysis and machine intelligence 41(8), 1909C1923 (2019)

    Google Scholar 

  8. Tang, J., Chen, X., Zeng, G.: Joint implicit image function for guided depth super-resolution. In: Proceedings of the 29th ACM International Conference on Multi-media. ACM (oct 2021). DOI: https://doi.org/10.1145/3474085.3475584

  9. Wang, X., Chen, X., Ni, B., Tong, Z., Wang, H.: Learning continuous depth representation via geometric spatial aggregator (2022), https://doi.org/10.48550/arXiv.2212.03499

  10. Zhang, Z., Zheng, H., Hong, R., Xu, M., Yan, S., Wang, M.: Deep color consistent network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1889C1898 (2022). https://doi.org/10.1109/CVPR52688.2022.00194

  11. Zhao, Z., Zhang, J., Xu, S., Lin, Z., Pfister, H.: Discrete cosine transform network for guided depth map super-resolution. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5687C5697 (2022). DOI: https://doi.org/10.1109/CVPR52688.2022.00561

  12. Zhong, Z., Liu, X., Jiang, J., Zhao, D., Chen, Z., Ji, X.: High-resolution depth maps imaging via attention-based hierarchical multi-modal fusion. IEEE Transactions on Image Processing 31, 648C663 (2022). DOI: https://doi.org/10.1109/TIP.2021.3131041

  13. Zhou, M., Yan, K., Pan, J., Ren, W., Xie, Q., Cao, X.: Memory-augmented Deep Unfolding Network for Guided Image Super-resolution. arXiv e-prints arXiv:2203.04960 (Feb 2022)

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China Youth Science Foundation Project (No.62202323), Fundamental Research Program of Shanxi Province (No.202103021223284), Taiyuan University of Science and Technology Scientific Research Initial Funding (No.20192023, No.20192055), Graduate Education Innovation Project of Taiyuan University of Science and Technology in 2022 (SY2022027), National Natural Science Foundation of China (No.62072325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Zhao, L., Zhang, J., Chen, B., Wang, A. (2024). Deep Arbitrary-Scale Unfolding Network for Color-Guided Depth Map Super-Resolution. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14434. Springer, Singapore. https://doi.org/10.1007/978-981-99-8549-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8549-4_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8548-7

  • Online ISBN: 978-981-99-8549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics