Skip to main content

SSDD-Net: A Lightweight and Efficient Deep Learning Model for Steel Surface Defect Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

Industrial defect detection is a hot topic in the computer vision field. At the same time, it is hard work because of the complex features and various categories of industrial defects. To solve the above problem, this paper introduces a lightweight and efficient deep learning model (SSDD-Net) for steel surface defect detection. At the same time, in order to improve the efficiency of model training and inference in the XPU distributed computing environment, parallel computing is introduced in this paper. First, a light multiscale feature extraction module (LMFE) is designed to enhance the model’s ability to extract features. The LMFE module employs three branches with different receptive fields to extract multiscale features. Second, a simple effective feature fusion network (SEFF) is introduced to be the neck network of the SSDD-Net to achieve efficient feature fusion. Extensive experiments are conducted on a steel surface defect detection dataset, NEU-DET, to verify the effectiveness of the designed modules and proposed model. And the experimental results demonstrate that the designed modules are effective. Compared with other SOTA object detection models, the proposed model obtains optimal performance (73.73% in mAP@0.5) while keeping a small number of parameters (3.79M).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  2. Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. arXiv preprint arXiv:1905.05055 (2019)

  3. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  4. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  5. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  6. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  7. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  8. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  9. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  10. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOV4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  11. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  12. Ultralytics: YOLOv5 v6.2. https://github.com/ultralytics/yolov5. Accessed 17 Aug 2022

  13. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

  14. Wang, H., Li, Z., Wang, H.: Few-shot steel surface defect detection. IEEE Trans. Instrum. Meas. 71, 1–12 (2021)

    Google Scholar 

  15. Hatab, M., Malekmohamadi, H., Amira, A.: Surface defect detection using YOLO network. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2020. AISC, vol. 1250, pp. 505–515. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55180-3_37

    Chapter  Google Scholar 

  16. Wang, L., Liu, X., Ma, J., Su, W., Li, H.: Real-time steel surface defect detection with improved multi-scale YOLO-v5. Processes 11(5), 1357 (2023)

    Article  Google Scholar 

  17. Wang, C., Xu, J., Liang, X., Yin, D.: Metal surface defect detection based on weighted fusion. In: 2020 International Conference on Virtual Reality and Visualization (ICVRV), pp. 179–184. IEEE (2020)

    Google Scholar 

  18. Deng, H., Cheng, J., Liu, T., Cheng, B., Sun, Z.: Research on iron surface crack detection algorithm based on improved YOLOv4 network. J. Phys: Conf. Ser. 1631, 012081 (2020)

    Google Scholar 

  19. Kou, X., Liu, S., Cheng, K., Qian, Y.: Development of a YOLO-v3-based model for detecting defects on steel strip surface. Measurement 182, 109454 (2021)

    Article  Google Scholar 

  20. He, Y., Song, K., Meng, Q., Yan, Y.: An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 69(4), 1493–1504 (2019)

    Article  Google Scholar 

  21. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  24. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the project ZR2022LZH017 supported by Shandong Provincial Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuesong Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Wei, X., Jiang, X. (2024). SSDD-Net: A Lightweight and Efficient Deep Learning Model for Steel Surface Defect Detection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14434. Springer, Singapore. https://doi.org/10.1007/978-981-99-8549-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8549-4_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8548-7

  • Online ISBN: 978-981-99-8549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics