Skip to main content

PiDiNeXt: An Efficient Edge Detector Based on Parallel Pixel Difference Networks

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

The Pixel Difference Network (PiDiNet) is well-known for its success in edge detection. Combining traditional operators with deep learning, PiDiNet achieves competitive results with fewer parameters. However, the complex and inefficient choice of traditional edge detection operators hinders PiDiNet’s further development. Therefore, we propose a novel lightweight edge detector called PiDiNeXt, which combines traditional edge detection operators with deep learning-based model in parallel to solve the operators choice problem and further enrich features. The results of experiments on BSDS500 and BIPED datasets demonstrate that PiDiNeXt outperforms PiDiNet in terms of accuracy. Moreover, we employ the reparameterization technique to prevent the extra computational cost caused by the multi-branch construction. This enables PiDiNeXt to achieve an inference speed of 80 FPS, comparable to that of PiDiNet. Furthermore, the lightweight version of PiDiNeXt can achieve an inference speed of over 200 FPS, meeting the needs of most real-time applications. The source code is available at https://github.com/Li-yachuan/PiDiNeXt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  2. Bertasius, G., Shi, J., Torresani, L.: High-for-low and low-for-high: efficient boundary detection from deep object features and its applications to high-level vision. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015, pp. 504–512. IEEE Computer Society (2015)

    Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  4. Davis, L.S.: A survey of edge detection techniques. Comput. Graph. Image Process. 4(3), 248–270 (1975)

    Article  Google Scholar 

  5. Deng, R., Liu, S.: Deep structural contour detection. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 304–312 (2020)

    Google Scholar 

  6. Deng, R., Shen, C., Liu, S., Wang, H., Liu, X.: Learning to predict crisp boundaries. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 570–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_35

    Chapter  Google Scholar 

  7. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style ConvNets great again. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13733–13742 (2021)

    Google Scholar 

  8. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2014)

    Article  Google Scholar 

  9. Dollár, P., Zitnick, C.: Fast edge detection using structured forests. arXiv Computer Vision and Pattern Recognition, June 2014

    Google Scholar 

  10. Hallman, S., Fowlkes, C.C.: Oriented edge forests for boundary detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1732–1740 (2015)

    Google Scholar 

  11. Hallman, S., Fowlkes, C.: Oriented edge forests for boundary detection. Cornell University - arXiv, December 2014

    Google Scholar 

  12. He, J., Zhang, S., Yang, M., Shan, Y., Huang, T.: BDCN: bi-directional cascade network for perceptual edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 100–113 (2022)

    Article  Google Scholar 

  13. Liu, L., Zhao, L., Long, Y., Kuang, G., Fieguth, P.: Extended local binary patterns for texture classification. Image Vis. Comput. 30(2), 86–99 (2012)

    Article  Google Scholar 

  14. Liu, Y., et al.: Richer convolutional features for edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 41(08), 1939–1946 (2019)

    Article  Google Scholar 

  15. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  16. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using brightness and texture. In: Neural Information Processing Systems, January 2002

    Google Scholar 

  17. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26, 530–549 (2004)

    Article  Google Scholar 

  18. Poma, X.S., Riba, E., Sappa, A.: Dense extreme inception network: towards a robust CNN model for edge detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1923–1932 (2020)

    Google Scholar 

  19. Prewitt, J.M., et al.: Object enhancement and extraction. Picture Process. Psychopictorics 10(1), 15–19 (1970)

    Google Scholar 

  20. Pu, M., Huang, Y., Liu, Y., Guan, Q., Ling, H.: EDTER: edge detection with transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1402–1412 (2022)

    Google Scholar 

  21. Ren, X., Bo, L.: Discriminatively trained sparse code gradients for contour detection. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1, pp. 584–592 (2012)

    Google Scholar 

  22. Sharifi, M., Fathy, M., Mahmoudi, M.T.: A classified and comparative study of edge detection algorithms. In: Proceedings of the International Conference on Information Technology: Coding and Computing, pp. 117–120. IEEE (2002)

    Google Scholar 

  23. Shengjie, Z., Garrick, B., Xiaoming, L.: The edge of depth: explicit constraints between segmentation and depth. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13116–13125 (2020)

    Google Scholar 

  24. Sobel, I., Feldman, G., et al.: A 3 \(\times \) 3 isotropic gradient operator for image processing. Presented at the Stanford Artificial Intelligence Project (SAIL), pp. 271–272 (1968)

    Google Scholar 

  25. Soria, X., Sappa, A., Humanante, P., Akbarinia, A.: Dense extreme inception network for edge detection. Pattern Recogn. 139, 109461 (2023)

    Article  Google Scholar 

  26. Su, Z., et al.: Pixel difference networks for efficient edge detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5117–5127 (2021)

    Google Scholar 

  27. Wang, Y., Zhao, X., Huang, K.: Deep crisp boundaries. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  28. Wibisono, J.K., Hang, H.M.: Traditional method inspired deep neural network for edge detection. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 678–682. IEEE (2020)

    Google Scholar 

  29. Wibisono, J.K., Hang, H.M.: FINED: fast inference network for edge detection. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE Computer Society (2021)

    Google Scholar 

  30. XiaoFeng, R., Bo, L.: Discriminatively trained sparse code gradients for contour detection. In: Neural Information Processing Systems, December 2012

    Google Scholar 

  31. Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vis. 125(1), 3–18 (2017)

    Article  MathSciNet  Google Scholar 

  32. Xu, J., Xiong, Z., Bhattacharyya, S.P.: PIDNet: a real-time semantic segmentation network inspired from PID controller. arXiv preprint arXiv:2206.02066 (2022)

  33. Xuan, W., Huang, S., Liu, J., Du, B.: FCL-Net: towards accurate edge detection via fine-scale corrective learning. Neural Netw. 145, 248–259 (2022)

    Article  Google Scholar 

  34. Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.H.: Object contour detection with a fully convolutional encoder-decoder network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 193–202 (2016)

    Google Scholar 

  35. Zhao, J.X., Liu, J.J., Fan, D.P., Cao, Y., Yang, J., Cheng, M.M.: EGNet: edge guidance network for salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8779–8788 (2019)

    Google Scholar 

  36. Zhou, C., Huang, Y., Pu, M., Guan, Q., Huang, L., Ling, H.: The treasure beneath multiple annotations: an uncertainty-aware edge detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15507–15517 (2023)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by National key r &d program (Grant no. 2019YFF0301800), National Natural Science Foundation of China (Grant no. 61379106), the Shandong Provincial Natural Science Foundation (Grant nos. ZR2013FM036, ZR2015FM011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongmin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y. et al. (2024). PiDiNeXt: An Efficient Edge Detector Based on Parallel Pixel Difference Networks. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14434. Springer, Singapore. https://doi.org/10.1007/978-981-99-8549-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8549-4_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8548-7

  • Online ISBN: 978-981-99-8549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics