Skip to main content

CCSR-Net: Unfolding Coupled Convolutional Sparse Representation for Multi-focus Image Fusion

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14434))

Included in the following conference series:

  • 930 Accesses

Abstract

Multi-focus image fusion aims to generate an all-in-focus image from multiple partially focused images of the same scene captured with different focal settings. In this paper, we present a coupled convolutional sparse representation (CCSR) model for multi-focus image fusion. Instead of being solved by an iterative thresholding algorithm, the proposed CCSR model is unfolded into a learnable neural network (termed as CCSR-Net) using the deep unfolding technique, taking the advantages of both traditional methods and deep-learning (DL)-based ones. Based on the CCSR-Net, a new multi-focus image fusion method with good interpretability is further proposed. Experimental results on two popular datasets show that the proposed method can obtain the state-of-the-art performance in terms of both visual quality and objective assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Liu, Y., Wang, L., Cheng, J., Li, C., Chen, X.: Multi-focus image fusion: a survey of the state of the art. Inf. Fusion 64, 71–91 (2020)

    Article  Google Scholar 

  2. Zhang, Q., Guo, B.: Multifocus image fusion using the nonsubsampled contourlet transform. Sig. Process. 89(7), 1334–1346 (2009)

    Article  Google Scholar 

  3. Li, S., Kang, X., Hu, J.: Image fusion with guided filtering. IEEE Trans. Image Process. 22(7), 2864–2875 (2013)

    Article  Google Scholar 

  4. Liu, Y., Liu, S., Wang, Z.: A general framework for image fusion based on multi-scale transform and sparse representation. Inf. Fusion 24(1), 147–164 (2015)

    Article  Google Scholar 

  5. Yang, B., Li, S.: Multifocus image fusion and restoration with sparse representation. IEEE Trans. Instrum. Meas. 59(4), 884–892 (2010)

    Article  Google Scholar 

  6. Ma, X., Hu, S., Liu, S., Fang, J., Xu, S.: Multi-focus image fusion based on joint sparse representation and optimum theory. Sig. Process. Image Commun. 78, 125–134 (2019)

    Article  Google Scholar 

  7. Liu, Y., Chen, X., Ward, R., Wang, Z.: Image fusion with convolutional sparse representation. IEEE Signal Process. Lett. 23(12), 1882–1886 (2016)

    Article  Google Scholar 

  8. Aslantas, V., Kurban, R.: Fusion of multi-focus images using differential evolution algorithm. Expert Syst. Appl. 37(12), 8861–8870 (2010)

    Article  Google Scholar 

  9. Bai, X., Zhang, Y., Zhou, F., Xue, B.: Quadtree-based multi-focus image fusion using a weighted focus-measure. Inf. Fusion 22(1), 105–118 (2015)

    Article  Google Scholar 

  10. Guo, D., Yan, J., Qu, X.: High quality multi-focus image fusion using self-similarity and depth information. Optics Commun. 338(1), 138–144 (2015)

    Article  Google Scholar 

  11. Nejati, M., Samavi, S., Shirani, S.: Multi-focus image fusion using dictionary-based sparse representation. Inf. Fusion 25(1), 72–84 (2015)

    Article  Google Scholar 

  12. Liu, Y., Liu, S., Wang, Z.: Multi-focus image fusion with dense sift. Inf. Fusion 23(1), 139–155 (2015)

    Article  Google Scholar 

  13. Bouzos, O., Andreadis, I., Mitianoudis, N.: Conditional random field model for robust multi-focus image fusion. IEEE Trans. Image Process. 28(11), 5636–5648 (2019)

    Article  MathSciNet  Google Scholar 

  14. Zhang, Q., Liu, Y., Blum, R., Han, J., Tao, D.: Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a review. Inf. Fusion 40, 57–75 (2018)

    Article  Google Scholar 

  15. Liu, Y., Chen, X., Peng, H., Wang, Z.: Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 36, 191–207 (2017)

    Article  Google Scholar 

  16. Lai, R., Li, Y., Guan, J., Xiong, A.: Multi-scale visual attention deep convolutional neural network for multi-focus image fusion. IEEE Access 7, 114385–114399 (2019)

    Article  Google Scholar 

  17. Zhang, Y., Liu, Y., Sun, P., Yan, H., Zhao, X., Zhang, L.: IFCNN: a general image fusion framework based on convolutional neural network. Inf. Fusion 54, 99–118 (2020)

    Article  Google Scholar 

  18. Li, J., Guo, X., Lu, G., Zhang, B., Xu, Y., Wu, F., Zhang, D.: DRPL: deep regression pair learning for multi-focus image fusion. IEEE Trans. Image Process. 29, 4816–4831 (2020)

    Article  Google Scholar 

  19. Amin-Naji, M., Aghagolzadeh, A., Ezoji, M.: Ensemble of CNN for multi-focus image fusion. Inf. Fusion 51, 201–214 (2019)

    Article  Google Scholar 

  20. Xu, S., et al.: Towards reducing severe defocus spread effects for multi-focus image fusion via an optimization based strategy. IEEE Trans. Comput. Imaging 6, 1561–1570 (2020)

    Article  MathSciNet  Google Scholar 

  21. Zhang, H., Le, Z., Shao, Z., Xu, H., Ma, J.: MFF-GAN: an unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion. Inf. Fusion 66, 40–53 (2021)

    Article  Google Scholar 

  22. Guo, X., Nie, R., Cao, J., Zhou, D., Mei, L., He, K.: Fusegan: learning to fuse multi-focus image via conditional generative adversarial network. IEEE Trans. Multimedia 21(8), 1982–1996 (2019)

    Article  Google Scholar 

  23. Wang, Y., Xu, S., Liu, J., Zhao, Z., Zhang, C., Zhang, J.: MFIF-GAN: a new generative adversarial network for multi-focus image fusion. Sig. Process. Image Commun. 96, 116295 (2021)

    Article  Google Scholar 

  24. Wang, X., Hua, Z., Li, J.: Multi-focus image fusion framework based on transformer and feedback mechanism. Ain Shams Eng. J. 14(5), 101978 (2023)

    Article  Google Scholar 

  25. Ma, J., Tang, L., Fan, F., Huang, J., Mei, X., Ma, Y.: Swinfusion: cross-domain long-range learning for general image fusion via swin transformer. IEEE/CAA J. Automatica Sinica 9(7), 1200–1217 (2022)

    Article  Google Scholar 

  26. Zhang, X.: Deep learning-based multi-focus image fusion: a survey and a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4819–4838 (2022)

    Google Scholar 

  27. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML 2010, pp. 399–406. Omnipress, Madison (2010)

    Google Scholar 

  28. Marivani, I., Tsiligianni, E., Cornelis, B., Deligiannis, N.: Multimodal deep unfolding for guided image super-resolution. IEEE Trans. Image Process. 29, 8443–8456 (2020)

    Article  Google Scholar 

  29. Xu, N., Price, B., Cohen, S., Huang, T.: Deep image matting (2017)

    Google Scholar 

  30. Rhemann, C., Rother, C., Wang, J., Gelautz, M., Kohli, P., Rott, P.: A perceptually motivated online benchmark for image matting. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1826–1833 (2009)

    Google Scholar 

  31. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  32. Ma, H., Liao, Q., Zhang, J., Liu, S., Xue, J.H.: An -matte boundary defocus model-based cascaded network for multi-focus image fusion. IEEE Trans. Image Process. 29, 8668–8679 (2020)

    Article  Google Scholar 

  33. Jiang, L., Fan, H., Li, J., Tu, C.: Pseudo-siamese residual atrous pyramid network for multi-focus image fusion. IET Image Proc. 15(13), 3304–3317 (2021)

    Article  Google Scholar 

  34. Hossny, M., Nahavandi, S., Creighton, D.C.: Comments on ‘information measure for performance of image fusion’. Electron. Lett. 44, 1066–1067 (2008)

    Article  Google Scholar 

  35. Wang, Q., Shen, Y., Zhang, J.Q.: A nonlinear correlation measure for multivariable data set. Physica D 200(3), 287–295 (2005)

    MathSciNet  Google Scholar 

  36. Xydeas, C., Petrovic, V.: Objective image fusion performance measure. Electron. Lett. 36, 308–309 (2000)

    Article  Google Scholar 

  37. Yang, C., Zhang, J.Q., Wang, X.R., Liu, X.: A novel similarity based quality metric for image fusion. Inf. Fusion 9(2), 156–160 (2008)

    Article  Google Scholar 

  38. Cvejic, N., Loza, A., Bull, D., Canagarajah, N.: A similarity metric for assessment of image fusion algorithms. Int. J. Signal Process. 2 (2006)

    Google Scholar 

  39. Chen, Y., Blum, R.S.: A new automated quality assessment algorithm for image fusion. Image Vis. Comput. 27(10), 1421–1432 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 62176081, 62171176 and U23A20294

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, K., Cheng, J., Liu, Y. (2024). CCSR-Net: Unfolding Coupled Convolutional Sparse Representation for Multi-focus Image Fusion. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14434. Springer, Singapore. https://doi.org/10.1007/978-981-99-8549-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8549-4_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8548-7

  • Online ISBN: 978-981-99-8549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics