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Abstract—Weakly-supervised salient object detection (WSOD1)
aims to develop saliency models using image-level annotations.
Despite of the success of previous works, explorations on an
effective training strategy for the saliency network and accurate
matches between image-level annotations and salient objects are
still inadequate. In this work, 1) we propose a self-calibrated
training strategy by explicitly establishing a mutual calibration
loop between pseudo labels and network predictions, liberating
the saliency network from error-prone propagation caused by
pseudo labels. 2) we prove that even a much smaller dataset
(merely 1.8% of ImageNet) with well-matched annotations can
facilitate models to achieve better performance as well as general-
izability. This sheds new light on the development of WSOD and
encourages more contributions to the community. Comprehensive
experiments demonstrate that our method outperforms all the
existing WSOD methods by adopting the self-calibrated strategy
only. Steady improvements are further achieved by training on
the proposed dataset. Additionally, our method achieves 94.7%
of the performance of fully-supervised methods on average. And
what is more, the fully supervised models adopting our predicted
results as ”ground truths” achieve successful results (95.6% for
BASNet and 97.3% for ITSD on F-measure), while costing only
0.32% of labeling time for pixel-level annotation.

Index Terms—Salient object detection, Weakly supervised
learning, Deep learning.

I. INTRODUCTION

SALIENT object detection (SOD) aims to segment objects
in an image that visually attract human attention most.

It plays an important role in many computer vision and
robotic vision tasks [1], such as image segmentation [2] and
visual tracking [3]. Recently, deep learning based methods [4],
[5], [6], [7], [8], [9], [10], [11] have proved its superiority
and achieved remarkable progress. Success of those methods,
however, heavily relies a large number of highly accurate
pixel-level annotations, which are time-consuming and labor-
intensive to collect. A trade-off between testing accuracy and
training annotation cost has long existed in the SOD task.

To alleviate this predicament, several attempts have been
made to explore different weakly supervised formats, such
as noisy label [12], [13], scribble [14], [15] and image-level
annotation (i.e., classification label). Image-level annotation
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1In this paper, we denote weakly supervised salient object detection
methods using image-level labels as WSOD for convenience.
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Fig. 1. The visual saliency predictions during the training process of different
models, in which SC represents our proposed self-calibrated training strategy.
Column data represents image, ground truth and pseudo label, noting that the
ground truth is just for exhibition and not used in our framework.

based WSOD methods usually adopt a two-stage scheme,
which leverages a classification network to generate pseudo
labels and then trains a saliency network on these labels. In
this paper, we focus on this most challenging problem of
developing WSOD by only using image-level annotation.

Some pioneering works [16], [17], [18] pursue accurate
pseudo labels to train a saliency network and achieve good
performance. However, given the fact that pseudo labels are
still a far cry from the ground truths, the error remaining un-
addressed in the pseudo labels can propagate to the generated
predictions. This is consistent with the fact that as the number
of epochs increases, the parameters of the model are updated
and the prediction curve goes from underfitting to optimal to
overfitting. Interestingly, we observe that the relatively good
results containing global representations of saliency can be
predicted at the early training process (e.g., epoch-5), while
the predictions are more prone to error at the latter training
process (e.g., epoch-20), as shown in the first two rows in
Figure 1. This inspires us to go one step further exploring
how this global representation can be evolved as the model is
properly trained.

Moreover, previous works adopt existing large-scale
datasets, e.g., ImageNet [19] and COCO [20], to perform
WSOD. However, an observable fact should not be ignored
that there is an inherent inconsistency between image clas-
sification and SOD task. For example, many classification
labels do not match the salient objects in both single-object
and multi-object cases in ImageNet, as illustrated in Figure 2.
Such cross-domain inconsistency caused by those mismatched
samples impairs the generalizability of models and prevents
WSOD methods from achieving optimal results.
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Label: camel

Salient object: person

Label: lobster

Salient object: person

(a) Single-object cases (b) Multi-object cases

Label:  table, monitor, 

chair, keyboard …

Salient object: monitor

Label:  banana, table, 

bottle, chair …

Salient object:  bottle

Fig. 2. Cross-domain inconsistency between ImageNet dataset and salient
object detecion. (a) and (b) represent single-object and multi-object cases,
respectively.

In this work, our core insight is that we can design a self-
calibrated training strategy and exploit saliency-based image-
level annotations to address the aforementioned challenges.
To be specific, we 1) aim to calibrate our network with
progressively updated labels to curb the spread of errors
in low-quality pseudo labels during the training process. 2)
develop reliable matches for which image-level annotations are
correctly corresponding to salient objects. The source code will
be released upon publication. Concretely, our contributions are
as follows:

• We propose a self-calibrated training strategy to prevent
the network from propagating the negative influence of
error-prone pseudo labels. A mutual calibration loop is
established between pseudo labels and network predic-
tions to promote each other.

• We open up a fresh perspective on that even a much
smaller dataset (merely 1.8% of ImageNet) with well-
matched image-level annotations allows WSOD to achieve
better performance. This encourages more existing data
to be correctly annotated and further paves the way for
the booming future of WSOD.

• Our method outperforms existing WSOD methods on
all metrics over five benchmark datasets, and meanwhile
achieves averagely 94.7% performance of state-of-the-art
fully supervised methods. We also demonstrate that our
method retains its competitive edge on most metrics
even without our proposed dataset.

• We extend the proposed method to other fully supervised
SOD methods. Our offered pseudo labels enable these
methods to achieve comparatively high accuracy (95.6%
for BASNet [21] and 97.3% for ITSD [22] on F-measure)
while being free of pixel-level annotations, costing only
0.32% of labeling time for pixel-level annotation.

II. RELATED WORK

A. Salient Object Detection

Early SOD methods mainly focus on detecting salient ob-
jects by utilizing handcraft features and setting various priors,
such as center prior [23], boundary prior [24] and so on [25],
[26]. Recently, deep learning based methods demonstrate its
advantages and achieve remarkable improvements. Plenty of
promising works [27], [28], [29], [30], [31] are proposed and

present various effective architectures. Among them, Hou et
al.[27] present short connections to integrate the low-level
and high-level features, and predict more detailed saliency
maps. Wu et al.[28] propose a novel cascaded partial decoder
framework and utilize generated relatively precise attention
map to refine high-level features. in [29], [30], researchers
propose to explore boundary of the salient objects to predict
a more detailed prediction. Although appealing performance
these methods have achieved, vast high-quality pixel-level
annotations are needed for training their models, which are
time-consuming and laborious.

B. Weakly Supervised Salient Object Detection

For achieving a trade-off between labeling efficiency and
model performance, researchers aim to perform salient object
detect with low-cost annotations. To this end, WSOD is
presented and achieves an appealing performance with image-
level annotations only.

Wang et al.[16] design a foreground inference network
(FIN) to predict saliency maps from image-level annotations,
and introduce a global smooth pooling (GSP) to combine
the advantages of global average pooling (GAP) and global
max pooling (GMP), which explicitly computes the activation
of salient objects. In [17], Li et al.also perform WSOD
based on image-level annotations, they adopt a recurrent self-
training strategy and propose a conditional random field based
graphical model to cleanse the noisy pixel-wise annotations
by enhancing the spatial coherence as well as salient object
localization. Based on a traditional method MB+ [32], more
accurate saliency maps are generated in less than one sec-
ond per image. Zeng et al.[18] intelligently utilize multiple
annotations (i.e.,, classification and caption annotations) and
design a multi-source weak supervision framework to integrate
information from various annotations. Benefited from multiple
annotations and an interactive training strategy, a really sample
saliency network can also achieve appealing performance. All
the above methods target to train a classification network (on
existing large-scale multiple objects dataset, i.e.,, ImageNet
[19] or Microsoft COCO [20]) to generate class activation
maps (CAMs) [33], then perform different refinement methods
to generate pseudo labels. Supervised by these pseudo labels
directly, a saliency network is trained and predicts the final
saliency maps.

Different from the aforementioned works, we argue that:
1) Developing an effective training strategy encourages more
accurate predictions even under the supervision of inaccurate
pseudo labels which would mislead the networks. 2) Establish-
ing accurate matches between classification labels and salient
objects could facilitate the further development of WSOD.

III. THE PROPOSED METHOD

In this section, we describe the details of our two-stage
framework. As illustrated in the Figure 3, in the first training
stage, we train a normal classification network based on the
proposed saliency-based dataset, to generate more accurate
pseudo labels. We then develop a saliency network using the
pseudo labels in the second stage. A self-calibrated training
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Fig. 3. Overall framework of our proposed method. In the first stage, classification labels are used to supervise classification network to generate CAMs and
further produce pseudo labels. In the second stage, we train a saliency network with the above pseudo labels and propose a self-calibrated strategy to correct
labels and predictions progressively.

strategy is proposed in this stage to immune network from
inaccurate pseudo labels and encourage more accurate predic-
tions.

A. From Image-level to Pixel-level

Class activation maps (CAMs) [33] localize the most dis-
criminative regions in an image using only a normal classifi-
cation network and build a preliminary bridge from image-
level annotations to pixel-level segmentation tasks. In this
paper, we adopt CAMs following the same setting of [34],
to generate pixel-level pseudo labels in the first training stage.
To better understand our proposed approach, we will describe
the generation of CAMs in a brief way.

For a classification network, we discard all the fully con-
nected layers and apply an extra global average pooling (GAP)
layer as well as a convolution layer as previous works do. In
the training phase, we take images in classification dataset as
input, and compute its classification scores Cls as follows:

Cls = ws
T ∗GAP (F 5) + bs, (1)

where F 5 represents the features from the last convolution
block, GAP (·) denotes the global average pooling operation
and wTs as well as bs are the learnable parameters of the
convolution layer. In the inference phase, we compute the
CAMs of images in DUTS-Train dataset as follows:

CAM =

N∑
k=1

Clsk ∗Norm(Relu(ws
T ∗ F 5 + bs)k), (2)

where Relu(·) and Norm(·) denote the relu activation func-
tion and normalization function, respectively. wTs and bs are
the shared parameters learnd in the training phase, Clsk
represents the classification scores for category k and N
represents the total number of categories. In this phase, multi-
scale inference strategy is adopted, which rescales the original

image into four sizes and computes the average CAMs as the
final output.

As Ahn et al.[34] have pointed out, CAMs mainly concen-
trate on the most discriminative regions and are too coarse
to serve as pseudo labels. Various refinements have been
conducted to generate pseudo labels. Different from [16],
[18] using an clustering algorithm SLIC [35], a plug-and-
play module PAMR [36] is adopt in our method. It performs
refinement using the low-level color information of RGB
images, which can be inserted into our framework flexibly
and efficiently. Following the settings of [16], [18], we also
adopt CRF [37] for a further refinement. Note that it is only
used to generate pseudo labels in our method.

B. Self-calibrated Training Strategy

In the second training stage, a saliency network is trained
with the pseudo labels generated in the first training stage.
As is mentioned above, the relatively good results containing
global representations of saliency is gradually degraded as
the training process continues. A straightforward method to
tackle this dilemma is setting a validation set to pick the best
result during the training process. However, we argue that
it may lead to sub-optimal results because 1) despite good
saliency representations are learned at the early training stage,
the predictions are coarse and lack detail as the loss function
is still converging (as shown in the 2nd row in Figure 1).
2) the capability of networks to learn saliency representation
is not fully excavated. 3) we believe that WSOD should not
use any pixel-level ground truth in the training process, even
as a validation set. Following this main idea, we propose to
establish a mutual calibration loop during the training process
in which error-prone pseudo labels are recursively updated and
calibrate network for better predictions in turn.

Insight: As is discussed in the Section I, under the su-
pervision of noisy pseudo labels, the saliency network goes
from optimal to overfitting. On the one hand, in our weakly
supervised settings, this “overfitting” manifestes itself as the
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Algorithm 1 Self-calibrated training strategy

Require: The images from DUTS-Train dataset, In; The
predictions of saliency network, Pn; The original pseudo labels
generated in the 1st stage, Y1.

Ensure: the updated pseudo labels, Yn+1.
1: Performing 2nd training stage, maximum epoch is N .
2: for n = 1 to N do
3: Refined predictions: P

′
n = PAMR(Pn, In);

4: if P
′
n(x, y) > 0.4 then

5: P
′
n(x, y)= 1

6: else
7: P

′
n(x, y)= 0

8: end if
9: weighting factor λ = (n/N)0.5;

10: Updating pseudo labels: Yn+1 = Y1 ∗(1− λ) + P
′
n ∗λ;

11: end for

network being affected by the noisy pseudo labels and learn-
ing the inaccurate noise information in them, which heavily
restricts the performance of WSOD. It is also worth to mention
that this is fundamentally different from the “overfitting” in
supervised learning, the latter means that the network learns
the biased information in a less comprehensive training set.
On the other hand, we conclude reasons of the optimal point
before overfitting as: 1) Although many pseudo labels are
noisy and inaccurate, the whole pseudo labels still describe
general saliency cues. It can provide a roughly correct guid-
ance for the saliency network. 2) Before the loss converges, the
saliency network is prone to learn the regular and generalized
saliency cues rather than the irregular and noisy information
in pseudo labels. Such kind of robustness is also discussed
in [38]. Motivated by the above analyses, we propose a self-
calibrated training strategy to effectively utilize the robustness
and tackle the negative overfitting.

To be specific, supervised by inaccurate pseudo labels Y ,
we take the predictions P of the saliency network as saliency
seeds. As is illustrated in Figure 3, coarse but more accurate
seeds are predicted during the first few epochs regardless of
the inaccurate supervision of error-prone pseudo labels. We
take these seeds as correction terms to calibrate and update the
original pseudo labels Y , while performing refinement again
with PAMR. Detailed procedure is presentd in Algorithm 1,
here we set a threshold to 0.4 for the binarization operation
on refined predictions P

′
. We conduct self-calibrated strategy

throughout the training process, that is, it is performed on each
training batch. The loss function for this training stage can be
described as:

L(P, Y ) = −
∑
i=1

((1− λ)yi + λ p
′

i) ∗ log pi

−((1− λ)(1− yi) + λ(1− p
′

i)) ∗ log(1− pi),
(3)

where λ is the weighting factor that is illustrated in Algorithm
1. The intuition is that as the training process goes on, the
saliency prediction is more accurate and larger weight should
be given. yi, pi and p

′

i represent the elements of Y , P and
refined predictions P

′
, respectively.

As is illustrated in the Figure 3, equipped with our proposed
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Fig. 4. Detailed structure of our saliency network. We adopt a simple
encoder-decoder architecture and take prediction P as our final result.

self-calibrated training strategy, inaccurate pseudo labels are
progressively updated, and in turn supervise the network.
This mutual calibration loop finally encourages both accurate
pseudo labels and predictions.

C. Saliency Network

As for the saliency network, we adopt a simple encoder-
decoder architecture without any auxiliary modules, which is
usually served as baseline for fully-supervised SOD methods
[27], [28]. As illustrated in Figure 4, for an image from DUTS-
Train dataset, we take features F3, F4 and F5 from the encoder,
to generate F

′

3, F
′

4 and F
′

5 through two convolution layers,
and then adopt a bottom-up strategy to perform feature fusion,
which can be denoted as:

P = σ(Conv(Cat(Up(F5

′
), Up(F4

′
), F3

′
))), (4)

where σ(·) represents the sigmoid function, Conv(·) and
Cat(·) denote the convolution and concatenation operation,
respectively. Up(·) represents upsampling feature maps to the
same size.

In the decoder, the number of output channels of all the
middle convolution layers are set to 64 for acceleration. Note
that our final prediction P is predicted in an end-to-end manner
in the test phase without any post-processing.

IV. DATASET CONSTRUCTION

To explore the advantages of accurate matches between
image-level annotations and corresponding salient objects, we
establish a saliency-based classification dataset, which ensures
all the classification labels correspond to the salient objects.
Following this main idea, we relabel an existing widely-
adopted saliency training set DUTS-Train [16] with well-
matched image-level annotations, namely DUTS-Cls dataset.
It fits with WSOD better than existing large-scale classification
datasets due to the accurate matches, and facilitates the further
improvements for WSOD.

To be specific, we select and label images in DUTS-Train
with image-level annotations, while discarding rare categories
because only several images are contained. The proposed
DUTS-Cls dataset contains 44 categories and 5959 images.
As is illustrated in Figure 5, it reaches a relative equilibrium
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Fig. 5. Our introduced DUTS-Cls is a saliency-based dataset with image-
level annotations, containing 44 categories and 5959 images, in which all the
classification labels correspond to the most salient objects in images.

in terms of image numbers of each category and covers most
common categories.

It is worth mentioning that labeling image-level annotations
is quite fast, which only takes less than 1 seconds per image.
Compared to about 3 minutes [39] for labeling a pixel-
level ground truth, it takes less than 0.56% of the time and
labor cost for a sample. Annotating DUTS-Cls dataset (5959
samples) only costs 0.32% of labeling time than annotating
the whole DUTS-Train dataset (10553 samples) with pixel-
level ground truth. This indicates that exploring WSOD with
image-level annotation is quite efficient. Moreover, the DUTS-
Cls dataset with well-matched image-level annotations offers
a better choice for WSOD than ImageNet, and we genuinely
hope it could contribute to the community and encourage more
existing data to be correctly annotated at image level.

V. EXPERIMENTS

A. Implementation Details

We implement our method on the Pytorch toolbox with a
single RTX 2080Ti GPU. The backbone adopted in our method
is DenseNet-169 [40], which is same as the latest work [18].
During the first training stage, we train a classification network
on our proposed DUTS-Cls dataset. In this stage, we adopt the
Adam optimization algorithm [41], the learning rate is set to
1e-4 and maximum epoch is set to 20. In the second training
stage, we only take the RGB images from DUTS-Train as our
training set. In this stage, we use Adam optimization algorithm
with the learning rate 3e-6 and maximum epoch 25. The batch
size of both training stages is set to 20 and all the training and
testing images are resized to 256× 256.
Hyperparameters setting. For the weighting factor λ of self-
calibrated strategy, we conduct hyper-parameter experiments
on ECSSD [42] dataset to pick the optimal value through F-
measure [43]. According to the results (0.5 to 0.848, 0.6 to
0.853 and 0.7 to 0.849), we finally set the hyper-parameter λ
to 0.6.

B. Datasets and Evaluation Metrics

For a fair comparison, we train our model on ImageNet
and our proposed DUTS-Cls dataset respectively, the results
are shown in Table I. We conduct comparisons on five fol-
lowing widely-adopted test datasets. ECSSD [42]: contains

1000 images which cover various scenes. DUT-OMRON [24]:
includes 5168 challenging images consisting of single or
multiple salient objects with complex contours and back-
grounds. PASCAL-S [2]: is collected from the validation set
of the PASCAL VOC semantic segmentation dataset [44], and
contains 850 challenging images. HKU-IS [45]: includes 4447
images, many of which contain multiple disconnected salient
objects. DUTS [16]: is the largest salient object detection
benchmark, which contains 10553 training samples (DUTS-
Train) and 5019 testing samples (DUTS-Test). Most images in
DUTS-Test are challenging with various locations and scales.

To evaluate our method in a comprehensive and reli-
able way, we adopt four well-accepted metrics, including S-
measure [46], E-measure [47], F-measure [43] as well as Mean
Absolute Error (MAE).

C. Comparison with State-of-the-arts

We compare our method with all the existing image-level
annotation based WSOD methods: WSS [16], ASMO [17] and
MSW [18]. To further demonstrate the effectiveness of our
weakly supervised methods, we also compare the proposed
method with nine state-of-the-art fully supervised methods
including DSS [27], R3Net [7], DGRL [48], BASNet [21],
PFA [49], CPD [28], SCRN [50], ITSD [22] and MINet [51],
all of which are trained on pixel-level ground truth and based
on DNNs. For a fair comparison, we use the saliency maps
provided by authors and perform the same evaluation code for
all methods.
Quantitative evaluation. Table I shows the quantitative com-
parison on four evaluation metrics over five datasets. It can be
seen that our method outperforms all the weakly supervised
methods on all metrics. Especially, 31.0% improvement on
HKU-IS and 28.4% on DUT-OMRON are achieved on MAE
metric. Our method also improves the performance on two
challenging datasets DUT-ORMON and PASCAL-S by a large
margin, which indicates that our method can explore more
accurate saliency cues even in complex scenes. Additionally,
the proposed saliency-based dataset with well-matched image-
level annotations enables our method to achieve better perfor-
mance, while far less training samples (less than 1.45% of
the latest work MSW [18]) are required. To prove the effect
of our method in a more objective manner, we also train our
method on ImageNet dataset following the previous works.
The results of ”Ours-” shown in Table I demonstrate that our
method can outperform existing methods on most metrics even
without the proposed dataset thanks to the effective strategy.
Moreover, we also compare our method with nine state-of-
the-art fully supervised methods. It can be seen in Figure 7
that our method, even with the image-level annotations only
and a simple baseline network without any auxiliary modules,
can also achieve 94.7% accuracy of fully supervised methods
on average.
Qualitative evaluation. In Figure 6, we show the qualitative
comparisons of our method with existing three WSOD meth-
ods as well as six state-of-the-art fully supervised methods. It
can be seen that our method could discriminate salient objects
from various challenging scenes (such as small objects case in
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TABLE I
QUANTITATIVE COMPARISONS OF E-MEASURE (Es), S-MEASURE (Sα), F-MEASURE (Fβ ) AND MAE (M ) METRICS OVER FIVE BENCHMARK DATASETS.

THE SUPERVISION TYPE (SUP.) I INDICATES USING IMAGE-LEVEL ANNOTATIONS ONLY, AND I&C REPRESENTS DEVELOPING WSOD ON BOTH
IMAGE-LEVEL ANNOTATIONS AND CAPTION ANNOTATIONS SIMULTANEOUSLY. NUM. REPRESENTS THE NUMBER OF TRAINING SAMPLES. - MEANS

UNAVAILABLE RESULTS, OURS- AND OURS REPRESENT OUR METHOD TRAINED ON IMAGENET AND PROPOSED DUTS-CLS DATASET, RESPECTIVELY.
THE BEST TWO RESULTS ARE MARKED IN BOLDFACE AND MAGENTA.

Methods Sup.
ECSSD DUTS-Test HKU-IS DUT-OMRON PASCAL-S

Sα Es Fβ M Sα Es Fβ M Sα Es Fβ M Sα Es Fβ M Sα Es Fβ M

WSS [16] I .811 .869 .823 .104 .748 .795 .654 .100 .822 .896 .821 .079 .725 .768 .603 .109 .744 .791 .715 .139
ASMO [17] I .802 .853 .797 .110 .697 .772 .614 .116 - - - - .752 .776 .622 .101 .717 .772 .693 .149
MSW [18] I&C .827 .884 .840 .096 .759 .814 .684 .091 .818 .895 .814 .084 .756 .763 .609 .109 .768 .790 .713 .133

Ours- I .836 .887 .838 .083 .770 .830 .689 .079 .836 .907 .822 .064 .743 .807 .643 .085 .778 .818 .742 .111
Ours I .858 .901 .853 .071 .776 .829 .688 .077 .850 .918 .835 .058 .766 .817 .667 .078 .781 .824 .749 .108

Image WSS [12] ASMO [13] MSW [14]OursGround truth DSS* [23] DGRL* [43] BASNet* [17] PFA* [44] ITSD*[18]CPD*[24]

Fig. 6. Visual comparisons of our method with existing WSOD methods as well as six state-of-the-art fully supervised SOD methods (marked with *) in
some challengling scenes.
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data denote the percentages of performance of our method in different fully
supervised methods.

the 1st row and complex background cases in the 2nd and 3rd

rows) and achieve more complete and accurate predictions.
Moreover, compared with the fully supervised methods, our
method also predicts comparable and even better results in
some cases, such as the complete house and log in the 5th

and 6th rows. But we would like to point out that our results
also need to be improved in term of the boundary of the salient
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Fig. 8. Visual analysis of the effectiveness of our proposed self-calibrated
strategy during the training process, noting that the ground truth is just for
exhibition and not used in our framework.

objects.

D. Ablation Studies

Effect of the self-calibrated strategy. We conduct exper-
iments on both ImageNet (1st and 3rd rows) and DUTS-
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TABLE II
QUANTITATIVE RESULTS OF ABLATION STUDIES. DATASET REPRESENTS DIFFERENT TRAINING SETS USED IN THE FIRST TRAINING STAGE.

STRATEGY DENOTES TRAINING STRATEGY USED IN THE SECOND STAGE, - INDICATES THE BASELINE MODEL WITHOUT ANY TRAINING STRATEGY
AND +SC REPRESENTS ADOPTING OUR PROPOSED SELF-CALIBRATED STRATEGY.

Dataset Strategy ECSSD DUTS-Test HKU-IS DUT-OMRON PASCAL-S

ImageNet DUTS-Cls - + SC Fβ↑ M↓ Fβ↑ M↓ Fβ↑ M↓ Fβ↑ M↓ Fβ↑ M↓

X X 0.776 0.121 0.642 0.094 0.773 0.090 0.568 0.111 0.694 0.140
X X 0.836 0.096 0.675 0.085 0.822 0.075 0.648 0.083 0.735 0.126

X X 0.838 0.083 0.689 0.079 0.822 0.064 0.643 0.085 0.742 0.111
X X 0.853 0.071 0.688 0.077 0.835 0.058 0.667 0.078 0.749 0.108

TABLE III
THE EFFECTIVENESS OF OUR PROPOSED SELF-CALIBRATED STRATEGY

ON ECSSD DATASET. + SC INDICATES SIMPLY APPLYING OUR
SELF-CALIBRATED STRATEGY DURING THE TRAINING PROCESS.

Method Strategy Sα↑ Es↑ Fβ↑ MAE ↓

BSCA [52]
- 0.846 0.884 0.814 0.084

+ SC +0.007 +0.009 +0.018 -0.008

MR [24]
- 0.839 0.884 0.823 0.085

+ SC +0.014 +0.010 +0.016 -0.009

MSW [18]
- 0.827 0.884 0.840 0.096

+ SC +0.017 +0.012 +0.014 -0.014

Cls (2nd and 4th rows) settings in Table II. It can be seen
that the proposed self-calibrated strategy can not only en-
hance the performance of our method on ImageNet setting
greatly, but also achieve great improvements even on the
DUTS-Cls setting, especially on MAE metrics. Besides, the
effectiveness of the proposed self-calibrated strategy can also
be demonstrated by the visual results in Figure 8. It can be
seen that the proposed strategy can keep and enhance the
globally good representations during the training process, and
predict accurate saliency maps even supervised by error-prone
pseudo labels. Moreover, for a comprehensive evaluation, 1)
We change the pseudo label by using two traditional SOD
methods BSCA [52] and MR [24], and then train our model
with and without the proposed strategy respectively, the results
are shown in the first four rows in Table III. 2) We further
apply our method on the lasted work MSW [18] by just adding
our proposed strategy in the last two rows in Table III. These
results strongly prove that the self-calibrated strategy can not
only work well on our method, but also effective for other
pseudo labels and other works.
Effect of the DUTS-Cls dataset. We introduce a saliency-
based dataset with well-matched image-level annotations to
offer a better choice for WSOD. The first two rows in Table
II demonstrate that DUTS-Cls dataset encourages the baseline
model to achieve remarkable improvements, compared to
ImageNet dataset. And as is illustrated in the last two rows in
Table II, it also proves its superiority by a steady improvement
on most metrics even if good enough performance is already
achieved by adopting the self-calibrated strategy. This is con-

Image

CAM I

CAM D

Fig. 9. Visual analysis of effect of DUTS-Cls datset. CAMI and CAMD

represent the CAMs generated by training on ImageNet and our DUTS-Cls
dataset, respectively. Heatmap is adopted for better visualization.

sistent with our argument that the cross-domain inconsistency
does impede the performance of WSOD, and a saliency-
based dataset can settle this matter better. Additionally, we
visualize the CAMs trained on ImageNet (named CAMI ) and
DUTS-Cls (named CAMD) in Figure 9, it can be seen that
CAMD have higher activation level within the salient objects
trained on well-matched DUTS-Cls dataset. Last but not
least, to further prove the effectiveness of the proposed DUTS-
Cls dataset objectively, we also train the latest work MSW
[18] on the DUTS-Cls dataset. As is shown in Figure 10,
by simply replacing ImageNet with DUTS-Cls, considerable
improvements are achieved in less training iterations. It is
worth to mention that the DUTS-Cls dataset reaches less
than 1.8% percent of ImageNet in terms of sample size. This
strongly demonstrates the effectiveness and generalizability of
the well-matched DUTS-Cls dataset for WSOD.

E. Effectiveness on Unseen Category

The category number of classification dataset inevitably in-
fluences the performance of WSOD. Unlike ImageNet includ-
ing 200 various categories, our proposed DUTS-Cls dataset
only contains 44 categories. It is necessary to evaluate the
effectiveness of our method as well as DUTS-Cls dataset on
unseen categories.

To this end, we choose THUR [53] as the benchmark
dataset for this experiment. THUR is a high-quality saliency
dataset which consists of five categories including butterfly,
coffee mug, dog, giraffe and airplane. The category airplane
is unseen to our DUTS-Cls dataset but seen to ImageNet,
while the category giraffe is unseen to both ImageNet and
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Fig. 10. Experiments on the effect of our proposed DUTS-Cls dataset. We
conduct experiments on the classification branch of the latest work MSW [18]
for a fair comparison, the results are tested on the ECSSD dataset.

TABLE IV
THE QUANTITATIVE RESULTS OF EFFECTIVENESS ON UNSEEN

CATEGORY. DATASET REPRESENTS THE TRAINING SET USED IN THE
FIRST TRAINING STAGE, THUR-PLANE AND THUR-GIRAFFE DENOTE

THE SAMPLES OF PLANE AND GIRAFFE IN THUR DATASET,
RESPECTIVELY.

Method Dataset
THUR THUR-plane THUR-giraffe

Fβ↑ M↓ Fβ↑ M↓ Fβ↑ M↓

MSW [18] ImageNet 0.624 0.104 0.716 0.079 0.547 0.088

Ours
ImageNet 0.676 0.089 0.788 0.055 0.550 0.088

DUTS-Cls 0.689 0.082 0.809 0.050 0.588 0.073

DUTS-Cls dataset. As is illustrated in the 2nd and 3rd rows
in Table IV, DUTS-Cls dataset encourages better predictions
on the whole THUR dataset, and also outperforms ImageNet
by a large margin on both airplane and giraffe categories. It
proves the generalizability and effectiveness of the proposed
DUTS-Cls dataset. Besides, the superiority of our method on
unseen categories can be demonstrated in the 1st and 2nd

rows of Table IV. Moreover, except the airplane and giraffe
categories, our method also behaves well on other various
unseen categories such as the cases shown in Figure 6. It
further supports the effect of our method on unseen categories.

F. Applications

We extend our method to fully supervised methods by
replacing manually labeled ground truth with our generated
predictions on training set. To be specific, we infer predictions
using our trained model on DUTS-Train dataset and adopt
CRF for a further refinement.v It can be seen in Figure
11 that trained with our offered predictions as supervision,
BASNet [21] and ITSD [22] achieve 95.6% and 97.3% of
their fully supervised accuracy on F-measure without any
pixel-level annotations. Additionally, our method also achieves
96.5% accuracy of its fully supervised accuracy on F-measure.
These experiments indicate that our method can serve as
an alternative to provide pixel-level supervisions for fully
supervised SOD methods while maintaining comparatively
high accuracy. This costs only 0.32% of pixel-level annotation
time and labor.

S-measure E-measure F-measure

Ours BASNet [17] ITSD [18]
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Fig. 11. Comparisons of different methods trained on our offered labels (the
right one) and ground truth (the left one) on ECSSD dataset. The number on
each data pair denotes the corresponding percentage.

VI. CONCLUSION

In this paper, we propose a novel self-calibrated training
strategy and introduce a saliency-based dataset with well-
matched image-level annotations for WSOD. The proposed
strategy establishes a mutual calibration loop between pseudo
labels and network predictions, which effectively prevents the
network from propagating the negative influence of error-prone
pseudo labels. We also argue that cross-domain inconsistency
exists between SOD and existing large-scale classification
datasets, and impedes the development of WSOD. To offer
a better choice for WSOD and encourage more contributions
to the community, we introduce a saliency-based classifica-
tion dataset DUTS-Cls to settle this matter well. Extensive
experiments demonstrate the superiority of our method and
effectiveness of our two ideas. In addition, our method can
serve as an alternative to provide pixel-level labels for fully
supervised SOD methods while maintaining comparatively
high performance, costing only 0.32% of labeling time for
pixel-level annotation.
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