Abstract
Specular highlights, generated by direct light reflection from surfaces, can significantly reduce the image quality and impair various computer vision applications. Recently, the existing approaches for jointly detecting and removing specular highlights attempted to use the detection as guidance for highlight removal. However, they ignored that this kind of unidirectional enhancement was susceptible to detection tasks. To achieve mutual enhancement, we assume that discriminative features would benefit the highlight detection task which needs to distinguish between highlight areas and highlight-free areas, while coherent features would facilitate the learning of highlight removal since it requires converting highlight areas to highlight-free areas. Specifically, we propose a mutual enhancement framework (MEF-SHDR) that addresses both specular highlight detection and removal in a unified manner. The proposed framework designs a Feature Decomposition and Aggregation Module (FDAM) that separates highlight and highlight-free features explicitly and aggregates them for improved detection and removal performance. Comprehensive experiments are implemented on five widely used datasets, i.e., SHIQ, LIME, SD1, SD2, and RD, demonstrating the superiority of the proposed approach over previous state-of-the-art methods, as well as the effectiveness of jointly detecting and removing highlights. Code is available at https://github.com/drafly/MEF-SHDR.
Supported by the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center Project under Grant (21KT008), the University Synergy Innovation Program of Anhui Province (GXXT-2022-052), and National Natural Science Foundation of China (No. 62202015).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akashi, Y., Okatani, T.: Separation of reflection components by sparse non-negative matrix factorization. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007, pp. 611–625. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16814-2_40
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)
Fu, G., Zhang, Q., Lin, Q., Zhu, L., Xiao, C.: Learning to detect specular highlights from real-world images. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1873–1881 (2020)
Fu, G., Zhang, Q., Zhu, L., Li, P., Xiao, C.: A multi-task network for joint specular highlight detection and removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7752–7761 (2021)
Gao, J., Zhang, T., Xu, C.: Graph convolutional tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4649–4659 (2019)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2414–2423 (2016)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (2014)
Guo, J., Zhou, Z., Wang, L.: Single image highlight removal with a sparse and low-rank reflection model. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 282–298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_17
Hou, S., Wang, C., Quan, W., Jiang, J., Yan, D.-M.: Text-aware single image specular highlight removal. In: Ma, H., et al. (eds.) PRCV 2021. LNCS, vol. 13022, pp. 115–127. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88013-2_10
Hu, G., Zheng, Y., Yan, H., Hua, G., Yan, Y.: Mask-guided cycle-GAN for specular highlight removal. Pattern Recogn. Lett. 161, 108–114 (2022)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141 (2018)
Hu, X., Zhu, L., Fu, C.W., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7454–7462 (2018)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Kim, S.-W., Kook, H.-K., Sun, J.-Y., Kang, M.-C., Ko, S.-J.: Parallel feature pyramid network for object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 239–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_15
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Li, R., Pan, J., Si, Y., Yan, B., Hu, Y., Qin, H.: Specular reflections removal for endoscopic image sequences with adaptive-RPCA decomposition. IEEE Trans. Med. Imaging 39(2), 328–340 (2019)
Lin, J., El Amine Seddik, M., Tamaazousti, M., Tamaazousti, Y., Bartoli, A.: Deep multi-class adversarial specularity removal. In: Felsberg, M., Forssén, P.-E., Sintorn, I.-M., Unger, J. (eds.) SCIA 2019. LNCS, vol. 11482, pp. 3–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20205-7_1
Meka, A., et al.: LIME: live intrinsic material estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6315–6324 (2018)
Muhammad, S., Dailey, M.N., Farooq, M., Majeed, M.F., Ekpanyapong, M.: Spec-net and spec-CGAN: deep learning models for specularity removal from faces. Image Vis. Comput. 93, 103823 (2020)
Shafer, S.A.: Using color to separate reflection components. Color. Res. Appl. 10(4), 210–218 (1985)
Shi, J., Dong, Y., Su, H., Yu, S.X.: Learning non-lambertian object intrinsics across shapenet categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1685–1694 (2017)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Wang, C., Wu, Z., Guo, J., Zhang, X.: Contour-constrained specular highlight detection from real-world images. In: Proceedings of the 18th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, pp. 1–4 (2022)
Wu, Z., Guo, J., Zhuang, C., Xiao, J., Yan, D.M., Zhang, X.: Joint specular highlight detection and removal in single images via unet-transformer. Comput. Vis.Media 9(1), 141–154 (2023)
Wu, Z.: Single-image specular highlight removal via real-world dataset construction. IEEE Trans. Multimedia 24, 3782–3793 (2021)
Xu, J., Liu, S., Chen, G., Liu, Q.: Highlight detection and removal method based on bifurcated-CNN. In: Liu, H., et al. (eds.) Intelligent Robotics and Applications, pp. 307–318. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13841-6_29
Yamamoto, T., Kitajima, T., Kawauchi, R.: Efficient improvement method for separation of reflection components based on an energy function. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 4222–4226. IEEE (2017)
Yang, Q., Tang, J., Ahuja, N.: Efficient and robust specular highlight removal. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1304–1311 (2014)
Yi, R., Tan, P., Lin, S.: Leveraging multi-view image sets for unsupervised intrinsic image decomposition and highlight separation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12685–12692 (2020)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4471–4480 (2019)
Zhang, L., Long, C., Zhang, X., Xiao, C.: RIS-GAN: explore residual and illumination with generative adversarial networks for shadow removal. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12829–12836 (2020)
Zhang, L., Long, C., Zhang, X., Xiao, C.: Exploiting residual and illumination with gans for shadow detection and shadow removal. ACM Trans. Multimedia Comput. Commun. Appl. 19, 1–22 (2022)
Zhang, W., Zhao, X., Morvan, J.M., Chen, L.: Improving shadow suppression for illumination robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(3), 611–624 (2018)
Zhu, T., Xia, S., Bian, Z., Lu, C.: Highlight removal in facial images. In: Peng, Y., et al. (eds.) PRCV 2020. LNCS, vol. 12305, pp. 422–433. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60633-6_35
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Huang, G., Yao, J., Huang, P., Han, L. (2024). A Mutual Enhancement Framework for Specular Highlight Detection and Removal. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14435. Springer, Singapore. https://doi.org/10.1007/978-981-99-8552-4_36
Download citation
DOI: https://doi.org/10.1007/978-981-99-8552-4_36
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8551-7
Online ISBN: 978-981-99-8552-4
eBook Packages: Computer ScienceComputer Science (R0)