Skip to main content

OKGR: Occluded Keypoint Generation and Refinement for 3D Object Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14436))

Included in the following conference series:

  • 850 Accesses

Abstract

Lidar-based 3D object detectors utilize point clouds to detect objects in autonomous driving. However, the point clouds are sparse and incomplete, which affects the detectors’ learning of shape knowledge and limits the 3D detection performance. Previous works improve performance through completing object shape at the point level or representation level, such as voxel. The former increases computational burden, while the latter has poor generalization ability to point-based detectors. In this paper, we present an approach, namely Occluded Keypoint Generation and Refinement (OKGR), which is effective to improve 3D detection performance by completing object features at the keypoint level. Specifically, Occluded Keypoint Generation (OKG) generates occluded keypoints to densify raw keypoints and learns the offsets between the generated keypoints and prototypes, while retaining the raw keypoints unchanged. Occluded Keypoint Refinement (OKR) assigns weights to the generated keypoints and conducts these weights to features to obtain high-quality complete features for detection. We apply our approach to two representative detectors, PV-RCNN++ and PDV, and evaluate the detectors on KITTI and Waymo Open Dataset. The experiments show significant performance improvement. Particularly, our OKGR applied on PV-RCNN++ achieves improvements of Pedestrian and Cyclist of +3.19%, +2.53% AP on average difficulty levels on KITTI, and +2.18%, +2.29% mAPH on Waymo Open Dataset. For more information, the supplementary material and code are available at https://github.com/Mingqj/OKGR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR (2019)

    Google Scholar 

  2. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: IPOD: intensive point-based object detector for point cloud. arXiv:1812.05276 (2018)

  3. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: STD: sparse-to-dense 3D object detector for point cloud. In: ICCV (2019)

    Google Scholar 

  4. Ngiam, J., et al.: StarNet: targeted computation for object detection in point clouds. arXiv:1908.11069 (2019)

  5. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: CVPR (2018)

    Google Scholar 

  6. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors (2018)

    Google Scholar 

  7. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: CVPR (2019)

    Google Scholar 

  8. Li, Z., Yao, Y., Quan, Z., Xie, J., Yang, W.: Spatial information enhancement network for 3D object detection from point cloud. PR (2022)

    Google Scholar 

  9. Xu, Q., Zhou, Y., Wang, W., Qi, C.R., Anguelov, D.: SPG: unsupervised domain adaptation for 3D object detection via semantic point generation. In: ICCV (2021)

    Google Scholar 

  10. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 3DV (2018)

    Google Scholar 

  11. Shi, S., et al.: PV-RCNN++: point-voxel feature set abstraction with local vector representation for 3D object detection. IJCV (2022)

    Google Scholar 

  12. Hu, J.S., Kuai, T., Waslander, S.L.: Point density-aware voxels for lidar 3D object detection. In: CVPR (2022)

    Google Scholar 

  13. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  14. Sun, P., et al.: Scalability in perception for autonomous driving: waymo open dataset. In: CVPR (2020)

    Google Scholar 

  15. Mao, J., Shi, S., Wang, X., Li, H.: 3D object detection for autonomous driving: a review and new outlooks. arXiv:2206.09474 (2022)

  16. Shi, W., Rajkumar, R.: Point-GNN: graph neural network for 3D object detection in a point cloud. In: CVPR (2020)

    Google Scholar 

  17. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS (2017)

    Google Scholar 

  18. Shi, S., Wang, Z., Shi, J., Wang, X., Li, H.: From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network. TPAMI (2020)

    Google Scholar 

  19. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3D object detection. In: CVPR (2021)

    Google Scholar 

  20. Mao, J., et al.: Voxel transformer for 3D object detection. In: ICCV (2021)

    Google Scholar 

  21. Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., Li, H.: Voxel R-CNN: towards high performance voxel-based 3D object detection. In: AAAI (2021)

    Google Scholar 

  22. Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: CVPR (2018)

    Google Scholar 

  23. Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: CVPR (2020)

    Google Scholar 

  24. Li, Z., Wang, F., Wang, N.: Lidar R-CNN: an efficient and universal 3D object detector. In: CVPR (2021)

    Google Scholar 

  25. Mao, J., Niu, M., Bai, H., Liang, X., Xu, H., Xu, C.: Pyramid R-CNN: towards better performance and adaptability for 3D object detection. In: ICCV (2021)

    Google Scholar 

  26. Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. TIP (1997)

    Google Scholar 

  27. Zhu, X., Ma, Y., Wang, T., Xu, Y., Shi, J., Lin, D.: SSN: shape signature networks for multi-class object detection from point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 581–597. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_35

    Chapter  Google Scholar 

  28. Xu, Q., Zhong, Y., Neumann, U.: Behind the curtain: learning occluded shapes for 3D object detection. In: AAAI (2022)

    Google Scholar 

  29. Wang, T., Hu, X., Liu, Z., Fu, C.W.: Sparse2dense: learning to densify 3D features for 3D object detection. In: NeurIPS (2022)

    Google Scholar 

  30. Wen, X., et al.: PMP-Net: point cloud completion by learning multi-step point moving paths. In: CVPR (2021)

    Google Scholar 

  31. Wen, X., et al.: PMP-Net++: point cloud completion by transformer-enhanced multi-step point moving paths. TPAMI (2022)

    Google Scholar 

  32. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. (1956)

    Google Scholar 

  33. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Comput. (2000)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant No. 62322602, Grant No. 62172225), CAAI-Huawei MindSpore Open Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, M., Yang, J., Zhang, S. (2024). OKGR: Occluded Keypoint Generation and Refinement for 3D Object Detection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14436. Springer, Singapore. https://doi.org/10.1007/978-981-99-8555-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8555-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8554-8

  • Online ISBN: 978-981-99-8555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics