Skip to main content

Feature Implicit Enhancement via Super-Resolution for Small Object Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14436))

Included in the following conference series:

  • 370 Accesses

Abstract

In recent years, object detection has made significant strides due to advancements in deep convolutional neural networks. However, the detection performance for small objects remains challenging. The visual information of small objects is easily confused with the background and even more likely to get lost in a series of downsampling operations due to the limited number of pixels, resulting in poor representations. In this paper, we propose a novel approach namely Feature Implicit Enhancement via Super-Resolution (FIESR) to learn more robust feature representations for small object detection. Our FIESR consists of two detection branches and requires two steps of training. Firstly, the detector learns the relationship between low-resolution and corresponding original high-resolution images to enhance the representations of small objects by minimizing a super-resolution loss between the two branches. Secondly, the detector is fine-tuned on original resolution images to fit extremely large objects. Additionally, our FIESR could be applied to various popular detectors such as Faster-RCNN, RetinaNet, FCOS, and DyHead. Our FIESR achieves competitive results on COCO dataset and is proved effective and flexible by extensive experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin, T.Y., et al.: Microsoft coco: Common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014, pp. 740–755. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  2. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  3. Haris, M., Shakhnarovich, G., Ukita, N.: Task-driven super resolution: object detection in low-resolution images. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. CCIS, vol. 1516, pp. 387–395. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92307-5_45

    Chapter  Google Scholar 

  4. Hu, P., Ramanan, D.: Finding tiny faces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–959 (2017)

    Google Scholar 

  5. Rabbi, J., Ray, N., Schubert, M., Chowdhury, S., Chao, D.: Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network. Remote Sens. 12(9), 1432 (2020)

    Article  Google Scholar 

  6. Bai, Y., Zhang, Y., Ding, M., Ghanem, B.: SOD-MTGAN: small object detection via multi-task generative adversarial network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 210–226. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_13

    Chapter  Google Scholar 

  7. Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative adversarial networks for small object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1222–1230 (2017)

    Google Scholar 

  8. Noh, J., Bae, W., Lee, W., Seo, J., Kim, G.: Better to follow, follow to be better: towards precise supervision of feature super-resolution for small object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9725–9734 (2019)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680. Curran Associates, Inc. (2014). https://www.papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

  10. Ni, Z., Yang, F., Wen, S., Zhang, G.: Dual relation knowledge distillation for object detection. arXiv preprint arXiv:2302.05637 (2023)

  11. Guo, J., et al.: Distilling object detectors via decoupled features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2154–2164 (2021)

    Google Scholar 

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015). https://www.proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

  13. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007 (2017). https://doi.org/10.1109/ICCV.2017.324

  14. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9759–9768 (2020)

    Google Scholar 

  15. Dai, X., et al.: Dynamic head: unifying object detection heads with attentions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7373–7382 (2021)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017). https://doi.org/10.1109/CVPR.2017.106

  18. Cui, Z., et al.: Exploring resolution and degradation clues as self-supervised signal for low quality object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.)Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27 2022, Proceedings, Part IX, vol. 13669, pp. 473–491. Springer,Cham (2022). https://doi.org/10.1007/978-3-031-20077-9_28

  19. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  20. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  21. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  22. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: RepPoints: point set representation for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9657–9666 (2019)

    Google Scholar 

  23. Qiu, H., Ma, Y., Li, Z., Liu, S., Sun, J.: BorderDet: border feature for dense object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 549–564. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_32

    Chapter  Google Scholar 

  24. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgement

This work was supported by National Key Research and Development Program of China(No. 2022ZD0119200), National Natural Science Foundation of China(No. 62072032 and 62076024), and National Science Fund for Distinguished Young Scholars(No. 62125601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Liu, M., Zhu, C., Zhou, F., Yin, XC. (2024). Feature Implicit Enhancement via Super-Resolution for Small Object Detection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14436. Springer, Singapore. https://doi.org/10.1007/978-981-99-8555-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8555-5_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8554-8

  • Online ISBN: 978-981-99-8555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics