Skip to main content

Hierarchical Focused Feature Pyramid Network for Small Object Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

Small object detection has been a persistently practical and challenging task in the field of computer vision. Advanced detectors often utilize a feature pyramid network (FPN) to fuse the features generated from various receptive fields, which improve the detection ability of multi-scale objects, especially for small objects. However, existing FPNs typically employ a naive addition-based fusion strategy, which neglects crucial details that may exist only at specific levels. These details are vital for accurately detecting small objects. In this paper, we propose a novel Hierarchical Focused Feature Pyramid Network (HFFPN) to enhance these details while ensuring the detection performance for objects of other scales. HFFPN consists of two key components: Hierarchical Feature Subtraction Module (HFSM) and Feature Fusion Guidance Attention (FFGA). HFSM is first designed to selectively amplify the information important to small object detection. FFGA is devised to focus on effective features by utilizing global information and mining small objects’ information from high-level features. Combining these two modules contributes greatly to the original FPN. In particular, the proposed HFFPN can be incorporated into most mainstream detectors, such as Faster RCNN, Retinanet, FCOS, etc. Extensive experiments on small object datasets demonstrate that HFFPN achieves consistent and significant improvements over the baseline algorithm while surpassing the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bashir, S.M.A., Wang, Y.: Small object detection in remote sensing images with residual feature aggregation-based super-resolution and object detector network. Remote Sens. 13(9), 1854 (2021)

    Google Scholar 

  2. Chen, K., et al.: Mmdetection: open MMLAB detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  3. Chen, Z., et al.: PIoU loss: towards accurate oriented object detection in complex environments. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 195–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_12

  4. Cheng, G., Yuan, X., Yao, X., Yan, K., Zeng, Q., Han, J.: Towards large-scale small object detection: survey and benchmarks. arXiv preprint arXiv:2207.14096 (2022)

  5. Ding, J., Xue, N., Long, Y., Xia, G.S., Lu, Q.: Learning ROI transformer for oriented object detection in aerial images. In: CVPR, pp. 2849–2858 (2019)

    Google Scholar 

  6. Ding, J., et al.: Object detection in aerial images: a large-scale benchmark and challenges. TPAMI 44(11), 7778–7796 (2021)

    Google Scholar 

  7. Ghiasi, G., Lin, T.Y., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: CVPR, pp. 7036–7045 (2019)

    Google Scholar 

  8. Guo, Z., Liu, C., Zhang, X., Jiao, J., Ji, X., Ye, Q.: Beyond bounding-box: convex-hull feature adaptation for oriented and densely packed object detection. In: CVPR, pp. 8792–8801 (2021)

    Google Scholar 

  9. Han, J., Ding, J., Li, J., Xia, G.S.: Align deep features for oriented object detection. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2021)

    Google Scholar 

  10. Han, J., Ding, J., Xue, N., Xia, G.S.: Redet: a rotation-equivariant detector for aerial object detection. In: CVPR, pp. 2786–2795 (2021)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  13. Li, W., Chen, Y., Hu, K., Zhu, J.: Oriented reppoints for aerial object detection. In: CVPR, pp. 1829–1838 (2022)

    Google Scholar 

  14. Li, Y., Huang, Q., Pei, X., Chen, Y., Jiao, L., Shang, R.: Cross-layer attention network for small object detection in remote sensing imagery. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 2148–2161 (2020)

    Google Scholar 

  15. Liao, M., Zou, Z., Wan, Z., Yao, C., Bai, X.: Real-time scene text detection with differentiable binarization and adaptive scale fusion. TPAMI 45(1), 919–931 (2022)

    Article  Google Scholar 

  16. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  18. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  19. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR, pp. 8759–8768 (2018)

    Google Scholar 

  20. Liu, Y., Sun, P., Wergeles, N., Shang, Y.: A survey and performance evaluation of deep learning methods for small object detection. Expert Syst. Appl. 172, 114602 (2021)

    Article  Google Scholar 

  21. Pan, X., et al.: Dynamic refinement network for oriented and densely packed object detection. In: CVPR, pp. 11207–11216 (2020)

    Google Scholar 

  22. Pi, Y., Nath, N.D., Behzadan, A.H.: Convolutional neural networks for object detection in aerial imagery for disaster response and recovery. Adv. Eng. Inform. 43, 101009 (2020)

    Article  Google Scholar 

  23. Qian, W., Yang, X., Peng, S., Yan, J., Guo, Y.: Learning modulated loss for rotated object detection. Proc. AAAI Conf. Artif. Intell. 35(3), 2458–2466 (2021)

    Google Scholar 

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. NeurIPS 28 (2015)

    Google Scholar 

  25. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Google Scholar 

  26. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV, pp. 9627–9636 (2019)

    Google Scholar 

  27. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. TPAMI 43(10), 3349–3364 (2020)

    Google Scholar 

  28. Wang, L., Tong, Z., Ji, B., Wu, G.: TDN: temporal difference networks for efficient action recognition. In: CVPR, pp. 1895–1904 (2021)

    Google Scholar 

  29. Wei, H., Zhang, Y., Chang, Z., Li, H., Wang, H., Sun, X.: Oriented objects as pairs of middle lines. ISPRS J. Photogramm. Remote. Sens. 169, 268–279 (2020)

    Article  Google Scholar 

  30. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

  31. Wu, J., Zhou, C., Zhang, Q., Yang, M., Yuan, J.: Self-mimic learning for small-scale pedestrian detection. In: ACMMM, pp. 2012–2020 (2020)

    Google Scholar 

  32. Xia, G.S., et al.: Dota: a large-scale dataset for object detection in aerial images. In: CVPR, pp. 3974–3983 (2018)

    Google Scholar 

  33. Xie, X., Cheng, G., Wang, J., Yao, X., Han, J.: Oriented r-cnn for object detection. In: ICCV, pp. 3520–3529 (2021)

    Google Scholar 

  34. Xu, Y., et al.: Gliding vertex on the horizontal bounding box for multi-oriented object detection. TPAMI 43(4), 1452–1459 (2020)

    Google Scholar 

  35. Yang, X., Hou, L., Zhou, Y., Wang, W., Yan, J.: Dense label encoding for boundary discontinuity free rotation detection. In: CVPR, pp. 15819–15829 (2021)

    Google Scholar 

  36. Yang, X., Yan, J., Feng, Z., He, T.: R3det: refined single-stage detector with feature refinement for rotating object. In: AAAI, vol. 35, pp. 3163–3171 (2021)

    Google Scholar 

  37. Yang, X., et al.: Scrdet: towards more robust detection for small, cluttered and rotated objects. In: ICCV, pp. 8232–8241 (2019)

    Google Scholar 

  38. Zhang, M., Yue, K., Zhang, J., Li, Y., Gao, X.: Exploring feature compensation and cross-level correlation for infrared small target detection. In: ACMMM, pp. 1857–1865 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R &D Program of China (No. 2022ZD0118201), the National Science Fund for Distinguished Young Scholars (No.62025603), the National Natural Science Foundation of China (No. U21B2037, No. U22B2051, No. 62176222, No. 62176223, No. 62176226, No. 62072386, No. 62072387, No. 62072389, No. 62002305 and No. 62272401), and the Natural Science Foundation of Fujian Province of China (No. 2021J01002, No. 2022J06001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liujuan Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Chen, Z., Ding, H., Cao, L. (2024). Hierarchical Focused Feature Pyramid Network for Small Object Detection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14436. Springer, Singapore. https://doi.org/10.1007/978-981-99-8555-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8555-5_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8554-8

  • Online ISBN: 978-981-99-8555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics