Skip to main content

Pacific Oyster Gonad Identification and Grayscale Calculation Based on Unapparent Object Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14436))

Included in the following conference series:

  • 343 Accesses

Abstract

The plumpness of the Pacific oyster gonad, the reproductive organs of both male and female oysters which are buried within the flesh of the oyster in the shell, has important implications for the quality and breeding of subsequent parents. At present, only the conventional method of breaking their shells allows for the observation and study of the interior tissues of Pacific oysters. In this paper, the gonad of Pacific oyster was observed by small animal Magnetic Resonance Imaging (MRI), and a multi-effective feature fusion network algorithm R-SINet was proposed for the detection of unapparent target, in Nuclear Magnetic Resonance (NMR) images, which can effectively solve the problem that the gonads of Pacific oysters are difficult to identify from the background images. In addition, the gray histogram of the segmented gonad region was calculated, and it was found that the female and male had differences in gray value. The sex of oyster was nondestructively detecting by this task. Firstly, established the Oyster gonad datasets; secondly, a compact pyramid refinement module that combines with high-level semantic features and low-level semantic features was proposed, designed a lightweight decoder to improve the accuracy of feature fusion; thirdly, a switchable excitation model capable of adaptive recalibration is proposed to obtain an attention map. Experimental results on the Oyster gonad datasets demonstrate the effectiveness of the method. Comparing R-SINet’s experimental findings to those of popular algorithm models, such as the benchmark algorithm SINet_v2, revealed promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, L.: Introduction to the management of hospital Bruker BioSpec94/30 USR type small animal MRI research equipment. China Equip. Eng. 51–52 (2022)

    Google Scholar 

  2. Zhang, Z.-N., Zheng, Y., Wang, X.-M.: Application of 7.0T small animal MRI to study the progress of Alzheimer’s disease. China Med. Imaging Technol. 930–933 (2019)

    Google Scholar 

  3. Hang, K.-B., Su, W.-W., Huang, J., Bao, G.-J., Liu, W.-H., Li, S.-P.: 7.0T small animal MR instrumentation to observe brain injury in a rat model of classic pyrexia. China Med. Imaging Technol. 38, 481–485 (2022)

    Google Scholar 

  4. Webster, B.: Handbook of small animal MRI. Aust. Veterinary J. 88, 407 (2010)

    Google Scholar 

  5. Gilchrist, S., et al.: A simple, open and extensible gating control unit for cardiac and respiratory synchronisation control in small animal MRI and demonstration of its robust performance in steady-state maintained CINE-MRI. Magn. Reson. Imaging 81, 1–9 (2021)

    Google Scholar 

  6. Liu, W.-L., et al.: Enhanced medial prefrontal cortex and hippocampal activity improves memory generalization in APP/PS1 Mice: a multimodal animal MRI study. Front. Cell. Neurosci. 16, 848967 (2022)

    Google Scholar 

  7. Fan, D.-P., Ji, G.-P., Sun, G.-L., Cheng, M.-M., Shen, J.-B., Shao, L.: Camouflaged object detection. In: CVPR, pp. 2774–2784 (2020)

    Google Scholar 

  8. Lv, Y.-Q., et al.: Simultaneously localize, segment and rank the camouflaged objects. In: CVPR, pp. 11591–11601 (2021)

    Google Scholar 

  9. Chen, S., Tan, X., Wang, B., Hu, X.: Reverse attention for salient object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 236–252. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_15

    Chapter  Google Scholar 

  10. Zhai, Q., Li, X., Yang, F., Chen, C.-L.-Z., Cheng, H., Fan, D.-P.: Mutual graph learning for camouflaged object detection. In: CVPR, pp. 12997–13007 (2021)

    Google Scholar 

  11. Fan, D.-P., Ji, G.-P., Cheng, M.-M., Shao, L.: Concealed object detection. IEEE Trans. Pattern Anal. Mach. Intell. 44, 6024–6042 (2021)

    Google Scholar 

  12. Jia, Q., Yao, S.-L., Liu, Y., Fan, X., Liu, R.-S., Luo, Z.-X.: Segment, magnify and reiterate: detecting camouflaged objects the hard way. In: CVPR, pp. 4713–4722 (2022)

    Google Scholar 

  13. Fu, K., Fan, D.-P., Ji, G.-P., Zhao, Q.-J., Shen, J.-B., Zhu C.: Siamese network for RGB-D salient object detection and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2021)

    Google Scholar 

  14. Li, Chongyi, Cong, Runmin, Piao, Yongri, Xu, Qianqian, Loy, Chen Change: RGB-D salient object detection with cross-modality modulation and selection. In: Vedaldi, Andrea, Bischof, Horst, Brox, Thomas, Frahm, Jan-Michael. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 225–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_14

    Chapter  Google Scholar 

  15. Gao, S.-H., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H., Torr, P.: Res2Net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43, 652–662 (2019)

    Google Scholar 

  16. Howard, A.-G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  17. Li, J.-H., Li, B., Xu, J.-Z., Xiong, R.-Q., Gao, W.: Fully connected network-based intra prediction for image coding. IEEE Trans. Image Process. 27, 3236–3247 (2018)

    Google Scholar 

  18. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)

    Google Scholar 

  19. Liang, S., Huang, Z., Liang, M., Yang, H.: Instance enhancement batch normalization: an adaptive regulator of batch noise. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4819–4827 (2020)

    Google Scholar 

  20. Kingma, D.-P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representation (2015)

    Google Scholar 

  21. Fan, D.-P., Cheng, M.-M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: ICCV, pp. 4548–4557 (2017)

    Google Scholar 

  22. Fan, D.-P., Gong, C., Cao, Y., Ren, B., Cheng, M.-M., Borji, A.: Enhanced alignment measure for binary foreground map evaluation. In: IJCAI (2018)

    Google Scholar 

  23. Ran, M., Lihi, Z.-M., Ayellet, T.: How to evaluate foreground maps? In: IEEE CVPR, pp. 248–255 (2014)

    Google Scholar 

  24. Perazzi, F., KrähenbĂ¼hl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: CVPR, pp. 733–740 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Yue, J., Li, Z., Yang, J., Wang, W. (2024). Pacific Oyster Gonad Identification and Grayscale Calculation Based on Unapparent Object Detection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14436. Springer, Singapore. https://doi.org/10.1007/978-981-99-8555-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8555-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8554-8

  • Online ISBN: 978-981-99-8555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics