Skip to main content

FlashViT: A Flash Vision Transformer with Large-Scale Token Merging for Congenital Heart Disease Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

  • 327 Accesses

Abstract

Congenital heart disease (CHD) is the most common congenital malformation and imaging examination is an important means to diagnose it. Currently, deep learning-based methods have achieved remarkable results in various types of imaging examinations. However, the issues of large parameter size and low throughput limit their clinical applications. In this paper, we design an efficient, light-weight hybrid model named FlashViT, to assist cardiovascular radiologists in early screening and diagnosis of CHD. Specifically, we propose the Large-scale Token Merging Module (LTM) for more aggressive similar token merging without sacrificing accuracy, which alleviate the problem of high computational complexity and resource consumption of self-attention mechanism. In addition, we propose an unsupervised homogenous pre-training strategy to tackle the issue of insufficient medical image data and poor generalization ability. Compared with conventional pre-training strategy that use ImageNet1K, our strategy only utilizes less than 1\(\%\) of the class-agnostic medical images from ImageNet1K, resulting in faster convergence speed and advanced performance of the model. We conduct extensive validation on the collected CHD dataset and the results indicate that our proposed FlashViT-S achieves accuracy of 92.2\(\%\) and throughput of 3753 fps with about 3.8 million parameters. We hope that this work can provide some assistance in designing laboratory models for future application in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnaout, R., Curran, L., Zhao, Y., Levine, J.C., Chinn, E., Moon-Grady, A.J.: Expert-level prenatal detection of complex congenital heart disease from screening ultrasound using deep learning. medRxiv, pp. 2020–06 (2020)

    Google Scholar 

  2. Bolya, D., Fu, C.Y., Dai, X., Zhang, P., Feichtenhofer, C., Hoffman, J.: Token merging: your ViT but faster. arXiv preprint arXiv:2210.09461 (2022)

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  4. Cheng, J., et al.: ResGANet: residual group attention network for medical image classification and segmentation. Med. Image Anal. 76, 102313 (2022)

    Article  Google Scholar 

  5. Cheng, J., Tian, S., Yu, L., Lu, H., Lv, X.: Fully convolutional attention network for biomedical image segmentation. Artif. Intell. Med. 107, 101899 (2020)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Desai, G., Elsayed, N., Elsayed, Z., Ozer, M.: A transfer learning based approach for classification of COVID-19 and pneumonia in CT scan imaging. arXiv preprint arXiv:2210.09403 (2022)

  8. Dong, X., et al.: CSWin transformer: a general vision transformer backbone with cross-shaped windows. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12124–12134 (2022)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Huang, X., Deng, Z., Li, D., Yuan, X.: MISSFormer: an effective medical image segmentation transformer. arXiv preprint arXiv:2109.07162 (2021)

  12. Huynh, B.Q., Li, H., Giger, M.L.: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging 3(3), 034501–034501 (2016)

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Liang, Y., Ge, C., Tong, Z., Song, Y., Wang, J., Xie, P.: Not all patches are what you need: expediting vision transformers via token reorganizations. arXiv preprint arXiv:2202.07800 (2022)

  15. Liu, Y., et al.: Global prevalence of congenital heart disease in school-age children: a meta-analysis and systematic review. BMC Cardiovasc. Disord. 20, 1–10 (2020)

    Article  Google Scholar 

  16. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  17. Maaz, M., et al.: EdgeNeXt: efficiently amalgamated CNN-transformer architecture for mobile vision applications. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision, ECCV 2022 Workshops, ECCV 2022, Part VII. LNCS, vol. 13807, pp. 3–20. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25082-8_1

  18. Mehta, S., Rastegari, M.: MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer. arXiv preprint arXiv:2110.02178 (2021)

  19. Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., Soufi, G.J.: Deep-COVID: predicting COVID-19 from chest X-ray images using deep transfer learning. Med. Image Anal. 65, 101794 (2020)

    Article  Google Scholar 

  20. Perera, S., Adhikari, S., Yilmaz, A.: POCFormer: a lightweight transformer architecture for detection of COVID-19 using point of care ultrasound. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 195–199. IEEE (2021)

    Google Scholar 

  21. Rao, Y., Zhao, W., Liu, B., Lu, J., Zhou, J., Hsieh, C.J.: DynamicViT: efficient vision transformers with dynamic token sparsification. Adv. Neural. Inf. Process. Syst. 34, 13937–13949 (2021)

    Google Scholar 

  22. Rashid, U., Qureshi, A.U., Hyder, S.N., Sadiq, M.: Pattern of congenital heart disease in a developing country tertiary care center: factors associated with delayed diagnosis. Ann. Pediatr. Cardiol. 9(3), 210 (2016)

    Article  Google Scholar 

  23. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  24. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  25. Tu, Z., et al.: MaxViT: multi-axis vision transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022, Part XXIV. LNCS, vol. 13684, pp. 459–479. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20053-3_27

  26. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  27. Xu, X., et al.: ImageCHD: a 3D computed tomography image dataset for classification of congenital heart disease. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part IV 23. LNCS, vol. 12264, pp. 77–87. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, L. et al. (2024). FlashViT: A Flash Vision Transformer with Large-Scale Token Merging for Congenital Heart Disease Detection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics