Skip to main content

Knowledge Distillation of Attention and Residual U-Net: Transfer from Deep to Shallow Models for Medical Image Classification

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

With the widespread application of deep learning in medical image analysis, its capacity to handle high-dimensional and complex medical images has been widely recognized. However, high-accuracy deep learning models typically demand considerable computational resources and time, while shallow models are generally unable to compete with complex model. To overcome these challenges, this paper introduces a Knowledge Distillation methodology that merges features and soft labels, transfering knowledge encapsulated in the intermediate features and predictions of the teacher model to the student model. The student model imitates the teacher model’s behavior, thereby improving its prediction accuracy. Based on this, we propose the Res-Transformer teacher model bases on the U-Net architecture and the ResU-Net student model incorporates Residuals. The Res-Transformer model employs dual Attention to acquire deep feature maps of the image, and subsequently employs Hierarchical Upsampling to restore the details in these feature maps. The ResU-Net model enhances stability via Residuals and recovers the loss of image information in convolution operations through optimized skip-connection. Finally, we evaluate on multiple disease datasets. The results show that the Res-Transformer achieves accuracy up to 94.3%. By applying knowledge distillation, abundant knowledge from the Res-Transformer is transferring knowledge of the Res-Transformer to the ResU-Net model, improving its accuracy up to 7.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  2. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  3. Yao, L., Mao, C., Luo, Y.: Clinical text classification with rule-based features and knowledge-guided convolutional neural networks. BMC Med. Inf. Decis. Mak. 19(3), 31–39 (2019)

    Google Scholar 

  4. Li, C.Y., Liang, X., Hu, Z., Xing, E.P.: Knowledge-driven encode, retrieve, paraphrase for medical image report generation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6666–6673 (2019)

    Google Scholar 

  5. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020)

    Article  Google Scholar 

  6. Rajpurkar, P., et al.: Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  7. Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H.: Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718 (2016)

  8. Pathak, Y., Shukla, P.K., Tiwari, A., Stalin, S., Singh, S.: Deep transfer learning based classification model for covid-19 disease. IRBM 43(2), 87–92 (2022)

    Article  Google Scholar 

  9. Rossini, N., Dassisti, M., Benyounis, K., Olabi, A.G.: Methods of measuring residual stresses in components. Mater. Des. 35, 572–588 (2012)

    Article  Google Scholar 

  10. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  11. Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V.: U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 9, 82031–82057 (2021)

    Article  Google Scholar 

  12. Du, G., Cao, X., Liang, J., Chen, X., Zhan, Y.: Medical image segmentation based on u-net: a review. J. Imaging Sci. Technol. (2020)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  15. Rahman, T., et al.: Exploring the effect of image enhancement techniques on covid-19 detection using chest x-ray images. Comput. Biol. Med. 132, 104319 (2021)

    Google Scholar 

  16. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2015)

    Article  Google Scholar 

  17. Cruz-Roa, A., et al.: Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In: Medical Imaging 2014: Digital Pathology, vol. 9041, p. 904103. SPIE (2014)

    Google Scholar 

  18. Liu, M., et al.: A deep learning method for breast cancer classification in the pathology images. IEEE J. Biomed. Health Inf. 26(10), 5025–5032 (2022)

    Article  Google Scholar 

  19. Fan, Y., Gong, H.: An improved tensor network for image classification in histopathology. In: Pattern Recognition and Computer Vision: 5th Chinese Conference, PRCV 2022, Shenzhen, China, 4–7 November 2022, Proceedings, Part II, pp. 126–137. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-18910-4_11

  20. Li, X., Shen, X., Zhou, Y., Wang, X., Li, T.Q.: Classification of breast cancer histopathological images using interleaved densenet with senet (idsnet). PLoS ONE 15(5), e0232127 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China, Regional Science Fund Project, No: 72264037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, Z., Dong, Q., Ge, Y., Liu, W., Chen, H., Song, Y. (2024). Knowledge Distillation of Attention and Residual U-Net: Transfer from Deep to Shallow Models for Medical Image Classification. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics