Skip to main content

Encoder Activation Diffusion and Decoder Transformer Fusion Network for Medical Image Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

  • 318 Accesses

Abstract

Over the years, medical image segmentation has played a vital role in assisting healthcare professionals in disease treatment. Convolutional neural networks have demonstrated remarkable success in this domain. Among these networks, the encoder-decoder architecture stands out as a classic and effective model for medical image segmentation. However, several challenges remain to be addressed, including segmentation issues arising from indistinct boundaries, difficulties in segmenting images with irregular shapes, and accurate segmentation of lesions with small targets. To address these limitations, we propose Encoder Activation Diffusion and Decoder Transformer Fusion Network (ADTF). Specifically, we propose a novel Lightweight Convolution Modulation (LCM) formed by a gated attention mechanism, using convolution to encode spatial features. LCM replaces the convolutional layer in the encoder-decoder network. Additionally, to enhance the integration of spatial information and dynamically extract more valuable high-order semantic information, we introduce Activation Diffusion Blocks after the encoder (EAD), so that the network can segment a complete medical segmentation image. Furthermore, we utilize a Transformer-based multi-scale feature fusion module on the decoder (MDFT) to achieve global interaction of multi-scale features. To validate our approach, we conduct experiments on multiple medical image segmentation datasets. Experimental results demonstrate that our model outperforms other state-of-the-art (SOTA) methods on commonly used evaluation metrics.

This work was supported by the National Natural Science Foundation of China (NSFC) under grant numbers 62272342, 62020106004, 92048301.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Bi-directional convlstm u-net with densley connected convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  2. Bai, H., Zhang, R., Wang, J., Wan, X.: Weakly supervised object localization via transformer with implicit spatial calibration. In: Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part IX, pp. 612–628. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-20077-9_36

  3. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  4. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  5. Chen, S., Niu, J., Deng, C., Zhang, Y., Chen, F., Xu, F.: Ce-net: a coordinate embedding network for mismatching removal. IEEE Access 9, 147634–147648 (2021)

    Article  Google Scholar 

  6. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  7. Dai, D., et al.: MS RED: a novel multi-scale residual encoding and decoding network for skin lesion segmentation. Med. Image Anal. 75, 102293 (2022)

    Article  Google Scholar 

  8. Feng, S., et al.: CPFNET: context pyramid fusion network for medical image segmentation. IEEE Trans. Med. Imaging 39(10), 3008–3018 (2020)

    Article  Google Scholar 

  9. Gao, S., Tsang, I.W.H., Chia, L.T.: Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 92–104 (2012)

    Article  Google Scholar 

  10. Gu, R., et al.: CA-NET: comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Trans. Med. Imaging 40(2), 699–711 (2020)

    Article  Google Scholar 

  11. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: more features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1580–1589 (2020)

    Google Scholar 

  12. Hou, Q., Lu, C.Z., Cheng, M.M., Feng, J.: Conv2former: a simple transformer-style convnet for visual recognition. arXiv preprint arXiv:2211.11943 (2022)

  13. Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  14. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete structures. In: Proceedings of the 19th International Conference on Machine Learning, vol. 2002, pp. 315–322 (2002)

    Google Scholar 

  15. Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via deep parsing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1377–1385 (2015)

    Google Scholar 

  16. Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Deep learning markov random field for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1814–1828 (2017)

    Article  Google Scholar 

  17. Messaoudi, H., Belaid, A., Salem, D.B.: Cross-dimensional transfer learning in medical image segmentation with deep learning. Med. Image Anal. (2023)

    Google Scholar 

  18. Mou, L., et al.: Cs2-net: deep learning segmentation of curvilinear structures in medical imaging. Med. Image Anal. 67, 101874 (2021)

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Wang, H., Cao, P., Wang, J., Zaiane, O.R.: Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2441–2449 (2022)

    Google Scholar 

  21. Wang, S., Li, L.: Attu-net: attention u-net for brain tumor segmentation. In: International MICCAI Brainlesion Workshop, pp. 302–311. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-09002-8_27

  22. Wang, Y., Wei, Y., Qian, X., Zhu, L., Yang, Y.: Donet: dual objective networks for skin lesion segmentation. arXiv preprint arXiv:2008.08278 (2020)

  23. Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: Denseaspp for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3684–3692 (2018)

    Google Scholar 

  24. Yuan, F., Zhang, Z., Fang, Z.: An effective CNN and transformer complementary network for medical image segmentation. Pattern Recogn. 136, 109228 (2023)

    Article  Google Scholar 

  25. Zhou, B., Wang, S., Xiao, S.: Double recursive sparse self-attention based crowd counting in the cluttered background. In: Pattern Recognition and Computer Vision: 5th Chinese Conference, PRCV 2022, Shenzhen, China, 4–7 November 2022, Proceedings, Part I, pp. 722–734. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-18907-4_56

  26. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Xu, G., Zhao, M., Shi, F., Wang, H. (2024). Encoder Activation Diffusion and Decoder Transformer Fusion Network for Medical Image Segmentation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics