Abstract
Liver segmentation has important clinical implications using computed tomography (CT) and magnetic resonance imaging (MRI). MRI has complementary characteristics to improve the accuracy of medical analysis tasks. Compared with MRI, CT images of the liver are more abundant and readily available. Ideally, it is promising to transfer learned knowledge from the CT images with labels to the target domain MR images by unsupervised domain adaptation. In this paper, we propose a novel framework, i.e. cross-modality content-aware representation (CMCAR), to alleviate domain shifts for cross-modality semantic segmentation. The proposed framework mainly consists of two modules in an end-to-end manner. One module is an image-to-image translation network based on the generative adversarial method and representation disentanglement. The other module is a mutual learning model to reduce further the semantic gap between synthesis images and real images. Our model is validated on two cross-modality semantic segmentation datasets. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 865–872 (2019)
Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Ge, Y., Wei, D., Xue, Z., Wang, Q., Liao, S.: Unpaired MR to CT synthesis with explicit structural constrained adversarial learning. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI) (2019)
Hong, J., Yu, C.H., Chen, W.: Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning (2021)
Jiang, K., Quan, L., Gong, T.: Disentangled representation and cross-modality image translation based unsupervised domain adaptation method for abdominal organ segmentation. Int. J. Comput. Assist. Radiol. Surg. 17(6), 1101–1113 (2022)
Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19
Peng, L., Lin, L., Cheng, P., Huang, Z., Tang, X.: Unsupervised domain adaptation for cross-modality retinal vessel segmentation via disentangling representation style transfer and collaborative consistency learning. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)
Wang, S., Rui, L.: SGDR: semantic-guided disentangled representation for unsupervised cross-modality medical image segmentation (2022)
Wang, Z., et al.: Differential treatment for stuff and things: a simple unsupervised domain adaptation method for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12635–12644 (2020)
Wolterink, J.M., Dinkla, A.M., Savenije, M., Seevinck, P.R., Berg, C., Isgum, I.: Deep mr to ct synthesis using unpaired data. arXiv e-prints (2017)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE (2017)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgements
This work was supported by National Science Foundation of China under Grants No. 62072241.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Lin, X., Ji, Z. (2024). Liver Segmentation via Learning Cross-Modality Content-Aware Representation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_17
Download citation
DOI: https://doi.org/10.1007/978-981-99-8558-6_17
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8557-9
Online ISBN: 978-981-99-8558-6
eBook Packages: Computer ScienceComputer Science (R0)