Skip to main content

Liver Segmentation via Learning Cross-Modality Content-Aware Representation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

  • 723 Accesses

Abstract

Liver segmentation has important clinical implications using computed tomography (CT) and magnetic resonance imaging (MRI). MRI has complementary characteristics to improve the accuracy of medical analysis tasks. Compared with MRI, CT images of the liver are more abundant and readily available. Ideally, it is promising to transfer learned knowledge from the CT images with labels to the target domain MR images by unsupervised domain adaptation. In this paper, we propose a novel framework, i.e. cross-modality content-aware representation (CMCAR), to alleviate domain shifts for cross-modality semantic segmentation. The proposed framework mainly consists of two modules in an end-to-end manner. One module is an image-to-image translation network based on the generative adversarial method and representation disentanglement. The other module is a mutual learning model to reduce further the semantic gap between synthesis images and real images. Our model is validated on two cross-modality semantic segmentation datasets. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 865–872 (2019)

    Google Scholar 

  2. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)

    Article  Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  4. Ge, Y., Wei, D., Xue, Z., Wang, Q., Liao, S.: Unpaired MR to CT synthesis with explicit structural constrained adversarial learning. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI) (2019)

    Google Scholar 

  5. Hong, J., Yu, C.H., Chen, W.: Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning (2021)

    Google Scholar 

  6. Jiang, K., Quan, L., Gong, T.: Disentangled representation and cross-modality image translation based unsupervised domain adaptation method for abdominal organ segmentation. Int. J. Comput. Assist. Radiol. Surg. 17(6), 1101–1113 (2022)

    Article  Google Scholar 

  7. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    Chapter  Google Scholar 

  8. Peng, L., Lin, L., Cheng, P., Huang, Z., Tang, X.: Unsupervised domain adaptation for cross-modality retinal vessel segmentation via disentangling representation style transfer and collaborative consistency learning. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

    Google Scholar 

  9. Wang, S., Rui, L.: SGDR: semantic-guided disentangled representation for unsupervised cross-modality medical image segmentation (2022)

    Google Scholar 

  10. Wang, Z., et al.: Differential treatment for stuff and things: a simple unsupervised domain adaptation method for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12635–12644 (2020)

    Google Scholar 

  11. Wolterink, J.M., Dinkla, A.M., Savenije, M., Seevinck, P.R., Berg, C., Isgum, I.: Deep mr to ct synthesis using unpaired data. arXiv e-prints (2017)

    Google Scholar 

  12. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE (2017)

    Google Scholar 

  13. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation of China under Grants No. 62072241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zexuan Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, X., Ji, Z. (2024). Liver Segmentation via Learning Cross-Modality Content-Aware Representation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics