Skip to main content

Adversarial Keyword Extraction and Semantic-Spatial Feature Aggregation for Clinical Report Guided Thyroid Nodule Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

Abstract

Existing thyroid nodule segmentation methods are primarily developed based on ultrasound images, which generally neglects the clinical reports that include rich semantic information for nodules. However, current text guided segmentation methods for natural images are not applicable to the image-report thyroid nodule dataset, due to the many-to-one correspondence between images and reports in current data. To this end, we propose a clinical report guided thyroid nodule segmentation framework with Adversarial Keyword Extraction (AKE) module to extract keywords from reports and Semantic-Spatial Feature Aggregation (SSFA) module to integrate reports into the segmentation model. To alleviate the many-to-one correspondence issue, we devise the AKE module to highlight the keywords about current ultrasound images from clinical reports with a keywords mask, which adopts adversarial learning to encourage the mask generator to mask out the useful descriptions to boost segmentation performance. We further propose the SSFA module to effectively and efficiently map semantic information from reports to each pixel of spatial features, so as to emphasize the target regions. Moreover, we manually collect a clinical Reports Assisted Thyroid Nodule segmentation dataset (RATN), which includes the ultrasound images, the pixel-wise nodule segmentation annotation, and the clinical reports. Extensive experiments have been conducted on the RATN dataset, and the results prove the effectiveness and computational efficiency of the proposed method over the existing methods. Code and data are available at https://github.com/cvi-szu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acuña-Ruiz, A., Carrasco-López, C., Santisteban, P.: Genomic and epigenomic profile of thyroid cancer. Best Pract. Res. Clin. Endocrinol. Metab. 37(1), 101656 (2023)

    Article  Google Scholar 

  2. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. ArXiv (2021)

    Google Scholar 

  3. Fan, T., Wang, G., Li, Y., Wang, H.: MA-Net: a multi-scale attention network for liver and tumor segmentation. IEEE Access 8, 179656–179665 (2020)

    Article  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  5. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-Softmax. ArXiv (2016)

    Google Scholar 

  6. Jin, Z., Li, X., Zhang, Y., Shen, L., Lai, Z., Kong, H.: Boundary regression-based reep neural network for thyroid nodule segmentation in ultrasound images. Neural. Comput. Appl. 34, 1–10 (2022)

    Article  Google Scholar 

  7. Jing, Y., Kong, T., Wang, W., Wang, L., Li, L., Tan, T.: Locate then segment: a strong pipeline for referring image segmentation. In: CVPR, pp. 9858–9867 (2021)

    Google Scholar 

  8. Kaur, J., Jindal, A.: Comparison of thyroid segmentation algorithms in ultrasound and scintigraphy images. Int. J. Comput. Appl. 50(23), 24–27 (2012)

    Google Scholar 

  9. Kollorz, E.N., Hahn, D.A., Linke, R., Goecke, T.W., Hornegger, J., Kuwert, T.: Quantification of thyroid volume using 3-D ultrasound imaging. IEEE Trans. Med. Imaging 27(4), 457–466 (2008)

    Article  Google Scholar 

  10. Li, Z., Zhou, S., Chang, C., Wang, Y., Guo, Y.: A weakly supervised deep active contour model for nodule segmentation in thyroid ultrasound images. Pattern Recognit. Lett. 165, 128–137 (2023)

    Article  Google Scholar 

  11. Li, Z., et al.: LViT: language meets vision transformer in medical image segmentation. ArXiv (2022)

    Google Scholar 

  12. Ma, J., Wu, F., Jiang, T., Zhao, Q., Kong, D.: Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 12, 1895–1910 (2017)

    Article  Google Scholar 

  13. Monajatipoor, M., Rouhsedaghat, M., Li, L.H., Jay Kuo, C.C., Chien, A., Chang, K.W.: BERTHop: an effective vision-and-language model for chest X-ray disease diagnosis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 725–734. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_69

  14. Mylona, E.A., Savelonas, M.A., Maroulis, D.: Automated adjustment of region-based active contour parameters using local image geometry. IEEE Trans. Cybern. 44(12), 2757–2770 (2014)

    Article  Google Scholar 

  15. Pan, H., Zhou, Q., Latecki, L.J.: SGUNet: semantic guided UNet for thyroid nodule segmentation. In: ISBI, pp. 630–634 (2021)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Savelonas, M.A., Iakovidis, D.K., Legakis, I., Maroulis, D.: Active contours guided by echogenicity and texture for delineation of thyroid nodules in ultrasound images. IEEE Trans. Inf. Technol. Biomed. 13(4), 519–527 (2008)

    Article  Google Scholar 

  18. Tang, Z., Ma, J.: Coarse to fine ensemble network for thyroid nodule segmentation. In: Shusharina, N., Heinrich, M.P., Huang, R. (eds.) MICCAI 2020. LNCS, vol. 12587, pp. 122–128. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71827-5_16

    Chapter  Google Scholar 

  19. Tomar, N.K., Jha, D., Bagci, U., Ali, S.: TGANet: text-guided attention for improved polyp segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 151–160. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_15

  20. Turc, I., Chang, M.W., Lee, K., Toutanova, K.: Well-read students learn better: the impact of student initialization on knowledge distillation. ArXiv 13 (2019)

    Google Scholar 

  21. Valanarasu, J.M.J., Patel, V.M.: UNeXt: MLP-based rapid medical image segmentation network. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 23–33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_3

  22. Vaswani, A., et al.: Attention is all you need. NIPS 30, 5998–6008 (2017)

    Google Scholar 

  23. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE TPAMI 43(10), 3349–3364 (2020)

    Article  Google Scholar 

  24. Yang, Z., Wang, J., Tang, Y., Chen, K., Zhao, H., Torr, P.H.: LAVT: language-aware vision transformer for referring image segmentation. In: CVPR, pp. 18155–18165 (2022)

    Google Scholar 

  25. Zhang, Y., Lai, H., Yang, W.: Cascade UNet and CH-UNet for thyroid nodule segmentation and benign and malignant classification. In: Shusharina, N., Heinrich, M.P., Huang, R. (eds.) MICCAI 2020. LNCS, vol. 12587, pp. 129–134. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71827-5_17

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Natural Science Foundation of China under Grant 82261138629 and 62272319; and Guangdong Basic and Applied Basic Research Foundation under Grant 2023A1515010688, 2021A1515220072 and 2023A1515010677; and Shenzhen Municipal Science and Technology Innovation Council under Grant JCYJ20220531101412030, JCYJ20220530155811025, and JCYJ20220818095803007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Chen, W., Li, X., Shen, L., Lai, Z., Kong, H. (2024). Adversarial Keyword Extraction and Semantic-Spatial Feature Aggregation for Clinical Report Guided Thyroid Nodule Segmentation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics