Skip to main content

Multi-modality Fusion Based Lung Cancer Survival Analysis with Self-supervised Whole Slide Image Representation Learning

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

  • 822 Accesses

Abstract

Whole slide pathological images (WSIs) are the gold standard for lung cancer prognosis. However, due to their high resolution and limited annotations, lung cancer survival analysis based on WSIs becomes a challenging task. Some recent methods that fuse WSI and other modalities have achieved certain results. However, these methods tend to focus on integrating gene related information while overlooking relatively easily obtainable clinical variables and often rely on labor-intensive ROI annotations. In this work, we propose a novel framework for lung cancer survival analysis, which obviates the need for ROI annotations and fully exploits WSIs and clinical information by introducing a multi-modality fusion module and multi-task learning. We also utilizes self-supervised learning to eliminate the heterogeneity between WSIs and natural images. Experimental results via 5-fold cross-validation on 1,225 WSIs from 444 patients from NLST validate the state-of-the-art performance of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Nat. Acad. Sci. 115(13), E2970–E2979 (2018)

    Article  Google Scholar 

  2. Subramanian, V., Chidester, B., Ma, J., Do, M.N.: Correlating cellular features with gene expression using CCA. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 805–808. IEEE (2018)

    Google Scholar 

  3. Chen, R.J., et al.: Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging 41(4), 757–770 (2020)

    Article  Google Scholar 

  4. Zhu, X., Yao, J., Zhu, F., Huang, J.: WSISA: making survival prediction from whole slide histopathological images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7234–7242 (2017)

    Google Scholar 

  5. Yao, J., Zhu, X., Huang, J.: Deep multi-instance learning for survival prediction from whole slide images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 496–504. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_55

    Chapter  Google Scholar 

  6. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 65, 101789 (2020)

    Article  Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  10. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning, pp. 2127–2136. PMLR (2018)

    Google Scholar 

  11. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457–481 (1958)

    Article  MathSciNet  Google Scholar 

  12. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random survival forests (2008)

    Google Scholar 

  13. Antol, S., et al.: VQA: visual question answering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2425–2433 (2015)

    Google Scholar 

  14. Yu, Z., Yu, J., Fan, J., Tao, D.: Multi-modal factorized bilinear pooling with co-attention learning for visual question answering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1821–1830 (2017)

    Google Scholar 

  15. de Torres, J.P., et al.: Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest. Chest 132(6), 1932–1938 (2007)

    Article  Google Scholar 

  16. Kravchenko, J., Berry, M., Arbeev, K., Lyerly, H.K., Yashin, A., Akushevich, I.: Cardiovascular comorbidities and survival of lung cancer patients: medicare data based analysis. Lung Cancer 88(1), 85–93 (2015)

    Article  Google Scholar 

  17. Team, N.L.S.T.R.: The national lung screening trial: overview and study design. Radiology 258(1), 243–253 (2011)

    Google Scholar 

  18. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  19. Zubiolo, A.: Extraction de caractéristiques et apprentissage statistique pour l’imagerie biomédicale cellulaire et tissulaire. Ph.D. thesis, Université Nice Sophia Antipolis (2015)

    Google Scholar 

  20. Harrell, F.E., Jr., Lee, K.L., Mark, D.B.: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15(4), 361–387 (1996)

    Article  Google Scholar 

  21. Tibshirani, R.: The lasso method for variable selection in the cox model. Stat. Med. 16(4), 385–395 (1997)

    Article  Google Scholar 

  22. Pölsterl, S., Navab, N., Katouzian, A.: Fast training of support vector machines for survival analysis. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 243–259. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_15

    Chapter  Google Scholar 

  23. Yao, J., Zhu, X., Zhu, F., Huang, J.: Deep correlational learning for survival prediction from multi-modality data. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 406–414. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_46

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the General Program of National Natural Science Foundation of China (NSFC) under Grant 62276189, and the Fundamental Research Funds for the Central Universities No. 22120220583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Luo, Y., Li, B., Shen, X. (2024). Multi-modality Fusion Based Lung Cancer Survival Analysis with Self-supervised Whole Slide Image Representation Learning. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics