Abstract
Due to the remarkable performance of Transformers in 2D medical image segmentation, recent studies have incorporated them into 3D medical segmentation tasks. Compared to convolution operations in CNNs, Transformer-based models possess self-attention, allowing them to capture long-range dependencies among pixels. To address the high computational cost of the Transformer architecture when dealing with volumetric images containing a large number of slices, we propose an efficient hybrid CNN-Transformer architecture for 3D medical image segmentation named PAT-Unet. Firstly, our proposed Paired Attention Transformer (PAT) blocks effectively reduce spatial dimensions while proficiently learning channel and spatial information in 3D feature maps. This leads to improved segmentation performance by reducing parameter count and accelerating computation speed. Secondly, our Deformable Enhanced Skip Connection (DESC) module captures detailed features in irregular lesion areas by learning volume spatial offsets. Finally, we experimentally validate the effectiveness and efficiency of our model on the Synapse and ACDC benchmark datasets. On the Synapse dataset, our model achieves a Dice similarity score of 87.17%, reducing parameters and FLOPs by 67% compared to the best existing methods reported in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alom, M.Z., Yakopcic, C., Hasan, M., Taha, T.M., Asari, V.K.: Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 6(1), 014006 (2019)
Azad, R., et al.: Medical image segmentation review: the success of U-Net. arXiv preprint arXiv:2211.14830 (2022)
Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)
Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) ECCV 2022, Part III. LNCS, vol. 13803, pp. 205–218. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25066-8_9
Chen, J., et al.: TransUnet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Hatamizadeh, A., et al.: UNETR: transformers for 3d medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)
Huang, H., et al.: Unet 3+: a full-scale connected Unet for medical image segmentation. In: ICASSP, pp. 1055–1059. IEEE (2020)
Huang, X., Deng, Z., Li, D., Yuan, X.: MISSFormer: an effective medical image segmentation transformer. CoRR abs/2109.07162 (2021)
Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: Miccai multi-atlas labeling beyond the cranial vault-workshop and challenge. In: Proceedings of the MICCAI Multi-Atlas Labeling Beyond Cranial Vault-Workshop Challenge, vol. 5, p. 12 (2015)
Lee, H.H., Bao, S., Huo, Y., Landman, B.A.: 3D UX-Net: a large kernel volumetric convnet modernizing hierarchical transformer for medical image segmentation. arXiv preprint arXiv:2209.15076 (2022)
Li, H., Nan, Y., Yang, G.: LKAU-Net: 3D large-kernel attention-based U-Net for automatic MRI brain tumor segmentation. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, C.B. (eds.) MIUA 2022. LNCS, vol. 13413, pp. 313–327. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-12053-4_24
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Yang, X., Li, Z., Guo, Y., Zhou, D.: DCU-Net: a deformable convolutional neural network based on cascade U-Net for retinal vessel segmentation. Multimedia Tools Appl. 81(11), 15593–15607 (2022)
Zeng, N., et al.: Factoring 3d convolutions for medical images by depth-wise dependencies-induced adaptive attention. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 883–886. IEEE (2022)
Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: NNFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)
Acknowledgements
This work is supported in part by The Key R &D Program of Shandong Province (2021SFGC0101), The 20 Planned Projects in Jinan (202228120), National Key Research and Development Plan under Grant No. 2019YFB1404700.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zou, Q., Zhao, J., Li, M., Yuan, L. (2024). PAT-Unet: Paired Attention Transformer for Efficient and Accurate Segmentation of 3D Medical Images. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_30
Download citation
DOI: https://doi.org/10.1007/978-981-99-8558-6_30
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8557-9
Online ISBN: 978-981-99-8558-6
eBook Packages: Computer ScienceComputer Science (R0)