Skip to main content

PAT-Unet: Paired Attention Transformer for Efficient and Accurate Segmentation of 3D Medical Images

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

  • 754 Accesses

Abstract

Due to the remarkable performance of Transformers in 2D medical image segmentation, recent studies have incorporated them into 3D medical segmentation tasks. Compared to convolution operations in CNNs, Transformer-based models possess self-attention, allowing them to capture long-range dependencies among pixels. To address the high computational cost of the Transformer architecture when dealing with volumetric images containing a large number of slices, we propose an efficient hybrid CNN-Transformer architecture for 3D medical image segmentation named PAT-Unet. Firstly, our proposed Paired Attention Transformer (PAT) blocks effectively reduce spatial dimensions while proficiently learning channel and spatial information in 3D feature maps. This leads to improved segmentation performance by reducing parameter count and accelerating computation speed. Secondly, our Deformable Enhanced Skip Connection (DESC) module captures detailed features in irregular lesion areas by learning volume spatial offsets. Finally, we experimentally validate the effectiveness and efficiency of our model on the Synapse and ACDC benchmark datasets. On the Synapse dataset, our model achieves a Dice similarity score of 87.17%, reducing parameters and FLOPs by 67% compared to the best existing methods reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alom, M.Z., Yakopcic, C., Hasan, M., Taha, T.M., Asari, V.K.: Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 6(1), 014006 (2019)

    Article  Google Scholar 

  2. Azad, R., et al.: Medical image segmentation review: the success of U-Net. arXiv preprint arXiv:2211.14830 (2022)

  3. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  4. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) ECCV 2022, Part III. LNCS, vol. 13803, pp. 205–218. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25066-8_9

    Chapter  Google Scholar 

  5. Chen, J., et al.: TransUnet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Hatamizadeh, A., et al.: UNETR: transformers for 3d medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  9. Huang, H., et al.: Unet 3+: a full-scale connected Unet for medical image segmentation. In: ICASSP, pp. 1055–1059. IEEE (2020)

    Google Scholar 

  10. Huang, X., Deng, Z., Li, D., Yuan, X.: MISSFormer: an effective medical image segmentation transformer. CoRR abs/2109.07162 (2021)

    Google Scholar 

  11. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  12. Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: Miccai multi-atlas labeling beyond the cranial vault-workshop and challenge. In: Proceedings of the MICCAI Multi-Atlas Labeling Beyond Cranial Vault-Workshop Challenge, vol. 5, p. 12 (2015)

    Google Scholar 

  13. Lee, H.H., Bao, S., Huo, Y., Landman, B.A.: 3D UX-Net: a large kernel volumetric convnet modernizing hierarchical transformer for medical image segmentation. arXiv preprint arXiv:2209.15076 (2022)

  14. Li, H., Nan, Y., Yang, G.: LKAU-Net: 3D large-kernel attention-based U-Net for automatic MRI brain tumor segmentation. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, C.B. (eds.) MIUA 2022. LNCS, vol. 13413, pp. 313–327. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-12053-4_24

    Chapter  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Yang, X., Li, Z., Guo, Y., Zhou, D.: DCU-Net: a deformable convolutional neural network based on cascade U-Net for retinal vessel segmentation. Multimedia Tools Appl. 81(11), 15593–15607 (2022)

    Article  Google Scholar 

  17. Zeng, N., et al.: Factoring 3d convolutions for medical images by depth-wise dependencies-induced adaptive attention. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 883–886. IEEE (2022)

    Google Scholar 

  18. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: NNFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)

  19. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by The Key R &D Program of Shandong Province (2021SFGC0101), The 20 Planned Projects in Jinan (202228120), National Key Research and Development Plan under Grant No. 2019YFB1404700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, Q., Zhao, J., Li, M., Yuan, L. (2024). PAT-Unet: Paired Attention Transformer for Efficient and Accurate Segmentation of 3D Medical Images. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics