Skip to main content

Cell-CAEW: Cell Instance Segmentation Based on ConvAttention and Enhanced Watershed

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

  • 721 Accesses

Abstract

Cell instance segmentation in microscopy images is a challenging task. The morphological differences between different types of cells are significant, it is difficult to distinguish the boundaries between adjacent or overlapping cells. To address these issues, we improved Cellpose’s framework and proposed Cell-CoaT. Cell-CoaT adopts CoaT as the encoder and designs a decoder that can integrate features from different scales, and predicts the center region and gradient fields of cells. In the post-processing stage, we utilized a Marker-Controlled Watershed Segmentation with center point labels predicted by the network to alleviate under-segmentation and over-segmentation. Cell-CAEW obtains an F1 score of 0.7724 on the tuning set. The code will be released soon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III 18. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  3. He, K., et al.: Mask R-CNN. In: Proceedings of the IEEE International Conference on ICCV (2017)

    Google Scholar 

  4. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  5. Ma, J., Zhang, Y., Gu, S., et al.: Fast and low-GPU-memory abdomen CT organ segmentation: the flare challenge. Med. Image Anal. 82, 102616 (2022)

    Article  Google Scholar 

  6. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Liu, Y., Tian, Y., Chen, Y., et al.: Perturbed and strict mean teachers for semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4258–4267 (2022)

    Google Scholar 

  8. Zhu, X., Hu, H., Lin, S., et al.: Deformable ConvNets v2: more deformable, better results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9308–9316 (2019)

    Google Scholar 

  9. Ma, J., Chen, J., Ng, M., et al.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021)

    Article  Google Scholar 

  10. Ding, X., Zhang, X., Han, J., et al.: Scaling up your kernels to 31 \(\times \) 31: revisiting large kernel design in CNNs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11963–11975 (2022)

    Google Scholar 

  11. Stringer, C., Wang, T., Michaelos, M., et al.: Cellpose: a generalist algorithm for cellular segmentation. Nat. Meth. 18(1), 100–106 (2021)

    Article  Google Scholar 

  12. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  13. Xu, W., et al.: Co-scale conv-attentional image transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  14. Li, D., et al.: Involution: inverting the inherence of convolution for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  15. Hu, Y.: Taichi: an open-source computer graphics library. arXiv preprint arXiv:1804.09293 (2018)

  16. Cutler, K.J., Stringer, C., Lo, T.W., et al.: Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation. Nat. Meth. 19(11), 1438–1448 (2022)

    Article  Google Scholar 

  17. He, K., Zhang, X., Ren, S., et al.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  18. Chen, H., et al.: BlendMask: top-down meets bottom-up for instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8573–8581 (2020)

    Google Scholar 

  19. Oda, H., et al.: BESNet: boundary-enhanced segmentation of cells in histopathological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part II. LNCS, vol. 11071, pp. 228–236. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_26

    Chapter  Google Scholar 

  20. Zhou, Y., Li, W., Yang, G.: SCTS: instance segmentation of single cells using a transformer-based semantic-aware model and space-filling augmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2023)

    Google Scholar 

Download references

Ackonwledgments

This work is partially supported by the National Natural Science Foundation of China (Grant No. U20A20171), Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY21F020027, LY23F020023), and Key Programs for Science and Technology Development of Zhejiang Province (2022C03113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, L. (2024). Cell-CAEW: Cell Instance Segmentation Based on ConvAttention and Enhanced Watershed. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics