Abstract
Automatic retinal layer segmentation methods are currently successful in normal Optical Coherence Tomography (OCT) images, but they face great challenges for eyes with Pigment Epithelial Detachment (PED), where the morphology and structure of the retina change dramatically. Therefore, we propose a novel dual-path network that uses residual blocks as the encoders, and semantic path and boundary paths for layer segmentation and boundary regression, respectively. Specifically, to capture the shape and boundary information of objects accurately, we design a Boundary-Enhanced Global Attention (BEGA) module for semantic path to provide global guidance for high-level features. Additionally, we use a Gradient-Guided Spatial Attention (GGSA) module in the boundary path to acquire boundary features, alleviating interference in non-boundary regions. Finally, the segmentation probability map and the distance map output by the network are fed into the Topology Correction (TC) module to obtain the topology-guaranteed results. We investigate the proposed method on the OCTA-500 dataset and the experimental results prove that the proposed method outperformed the other four existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Fleckenstein, M., Issa, P.C., Helb, M., et al.: High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 49(9), 4137–4144 (2008)
Podoleanu, A.G.: Optical coherence tomography. J. Microsc. 247(3), 209–219 (2012)
Novosel, J., Vermeer, K.A., De Jong, J.H., Wang, Z., Van Vliet, L.J.: Joint segmentation of retinal layers and focal lesions in 3-D OCT data of topologically disrupted retinas. IEEE Trans. Med. Imaging 36(6), 1276–1286 (2017)
Koozekanani, D., Boyer, K., Roberts, C.: Retinal thickness measurements from optical coherence tomography using a Markov boundary model. IEEE Trans. Med. Imaging 20(9), 900–916 (2001)
Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, J.A., Farsiu, S.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Exp. 18(18), 19413–19428 (2010)
Xiang, D., et al.: Automatic retinal layer segmentation of OCT images with central serous retinopathy. IEEE J. Biomed. Health Inform. 23(1), 283–295 (2018)
Lang, A., et al.: Retinal layer segmentation of macular OCT images using boundary classification. Biomed. Opt. Exp. 4(7), 1133–1152 (2013)
Liu, X., Liu, Q., Zhang, Y., Wang, M., Tang, J.: TSSK-Net: weakly supervised biomarker localization and segmentation with image-level annotation in retinal OCT images. Comput. Biol. Med. 153, 106467 (2023)
Liu, X., Zhang, D., Yao, J., Tang, J.: Transformer and convolutional based dual branch network for retinal vessel segmentation in OCTA images. Biomed. Sig. Process. Control 83, 104604 (2023)
Roy, A.G., et al.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Exp. 8(8), 3627–3642 (2017)
Liu, X., et al.: Semi-supervised automatic segmentation of layer and fluid region in retinal optical coherence tomography images using adversarial learning. IEEE Access 7, 3046–3061 (2018)
Liu, X., Cao, J., Wang, S., Zhang, Y., Wang, M.: Confidence-guided topology-preserving layer segmentation for optical coherence tomography images with focus-column module. IEEE Trans. Instrum. Meas. 70, 1–12 (2020)
Waldstein, S.M., Wright, J., Warburton, J., Margaron, P., Simader, C., Schmidt-Erfurth, U.: Predictive value of retinal morphology for visual acuity outcomes of different ranibizumab treatment regimens for neovascular AMD. Ophthalmology 123(1), 60–69 (2016)
Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)
Ma, J., et al.: How distance transform maps boost segmentation CNNs: an empirical study. In: Medical Imaging with Deep Learning, pp. 479–492. PMLR (2020)
Lu, Y., Shen, Y., Xing, X., Ye, C., Meng, M.Q.H.: Boundary-enhanced semi-supervised retinal layer segmentation in optical coherence tomography images using fewer labels. Comput. Med. Imaging Graph. 105, 102199 (2023)
Li, M., et al.: Image projection network: 3D to 2D image segmentation in OCTA images. IEEE Trans. Med. Imaging 39(11), 3343–3354 (2020)
Apostolopoulos, S., De Zanet, S., Ciller, C., Wolf, S., Sznitman, R.: Pathological OCT retinal layer segmentation using branch residual U-shape networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 294–301. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_34
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)
Wang, B., Wei, W., Qiu, S., Wang, S., Li, D., He, H.: Boundary aware U-net for retinal layers segmentation in optical coherence tomography images. IEEE J. Biomed. Health Inform. 25(8), 3029–3040 (2021)
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China under Grant 62176190.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liu, X., Li, X. (2024). Joint Boundary-Enhanced and Topology-Preserving Dual-Path Network for Retinal Layer Segmentation in OCT Images with Pigment Epithelial Detachment. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_33
Download citation
DOI: https://doi.org/10.1007/978-981-99-8558-6_33
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8557-9
Online ISBN: 978-981-99-8558-6
eBook Packages: Computer ScienceComputer Science (R0)