Skip to main content

Autism Spectrum Disorder Diagnosis Using Graph Neural Network Based on Graph Pooling and Self-adjust Filter

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

  • 758 Accesses

Abstract

Currently, accurately identifying autism spectrum disorders (ASD) still have challenges. However, graph neural network used for ASD diagnosis only focus on the part of abnormal brain functional connectivity, ignoring the effects between brain regions and the help of phenotypic information, and the kernel is also pre-defined. To solve the above problems, a graph neural network based on self-attention graph pooling and self-adjust filter is proposed for ASD diagnosis. Specifically, first, self-attention graph pooling is used for feature extraction of the fMRI to account for the influence of nodes with abnormal brain functional connectivity and activity between brain regions in fMRI data. Then, image features were taken as graph nodes and phenotypic information as edges to form a population graph. Finally, to focus on both high and low frequency information in the graph, a graph neural network based on self-adjust filter is used to learn node embedding. Experimental results on ABIDE I showed the effectiveness of the proposed method.

This work was supported by the Natural Science Foundation of Shandong Province, China (ZR2022MF237 and ZR2020MF041).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amaral, D.G., Schumann, C.M., Nordahl, C.W.: Neuroanatomy of autism. Trends Neurosci. 31(3), 137–145 (2008)

    Article  Google Scholar 

  2. American Psychiatric Association, D., Association, A.P., et al.: Diagnostic and statistical manual of mental disorders: DSM-5, vol. 5. American psychiatric association Washington, DC (2013)

    Google Scholar 

  3. Baio, J., et al.: Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, united states, 2014. MMWR Surveill. Summ. 67(6), 1 (2018)

    Article  Google Scholar 

  4. Cao, M.: Using deepgcn to identify the autism spectrum disorder from multi-site resting-state data. Biomed. Signal Process. Control 70, 103015 (2021)

    Article  Google Scholar 

  5. Craddock, C., et al.: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Front. Neuroinform. 7, 27 (2013)

    Google Scholar 

  6. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  7. Jiang, H., Cao, P., Xu, M., Yang, J., Zaiane, O.: HI-GCN: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Comput. Biol. Med. 127, 104096 (2020)

    Article  Google Scholar 

  8. Kazi, A., Shekarforoush, S., Kortuem, K., Albarqouni, S., Navab, N., et al.: Self-attention equipped graph convolutions for disease prediction. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1896–1899. IEEE (2019)

    Google Scholar 

  9. Khazaee, A., Ebrahimzadeh, A., Babajani-Feremi, A.: Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory. Clin. Neurophysiol. 126(11), 2132–2141 (2015)

    Article  Google Scholar 

  10. Kong, Y., Gao, J., Xu, Y., Pan, Y., Wang, J., Liu, J.: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 324, 63–68 (2019)

    Article  Google Scholar 

  11. Ktena, S.I., et al.: Metric learning with spectral graph convolutions on brain connectivity networks. Neuroimage 169, 431–442 (2018)

    Article  Google Scholar 

  12. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: International Conference on Machine Learning, pp. 3734–3743. PMLR (2019)

    Google Scholar 

  13. Li, J., Zhong, Y., Han, J., Ouyang, G., Li, X., Liu, H.: Classifying ASD children with LSTM based on raw videos. Neurocomputing 390, 226–238 (2020)

    Article  Google Scholar 

  14. Li, X., Dvornek, N.C., Zhou, Y., Zhuang, J., Ventola, P., Duncan, J.S.: Graph neural network for interpreting task-fMRI biomarkers. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 485–493. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_54

    Chapter  Google Scholar 

  15. Li, X.: Braingnn: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  16. Li, X., et al.: Pooling regularized graph neural network for fMRI biomarker analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 625–635. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_61

    Chapter  Google Scholar 

  17. Liu, J., Li, M., Lan, W., Wu, F.X., Pan, Y., Wang, J.: Classification of alzheimer’s disease using whole brain hierarchical network. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(2), 624–632 (2016)

    Article  Google Scholar 

  18. Liu, J., Wang, X., Zhang, X., Pan, Y., Wang, X., Wang, J.: Mmm: classification of schizophrenia using multi-modality multi-atlas feature representation and multi-kernel learning. Multimedia Tools Appl. 77, 29651–29667 (2018)

    Article  Google Scholar 

  19. Mhiri, I., Rekik, I.: Joint functional brain network atlas estimation and feature selection for neurological disorder diagnosis with application to autism. Med. Image Anal. 60, 101596 (2020)

    Article  Google Scholar 

  20. Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)

    Article  Google Scholar 

  21. Parisot, S., et al.: Spectral graph convolutions for population-based disease prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21

    Chapter  Google Scholar 

  22. Silverstein, B.H., Bressler, S.L., Diwadkar, V.A.: Inferring the dysconnection syndrome in schizophrenia: interpretational considerations on methods for the network analyses of fmri data. Front. Psych. 7, 132 (2016)

    Google Scholar 

  23. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  24. Wen, G., Cao, P., Bao, H., Yang, W., Zheng, T., Zaiane, O.: MVS-GCN: a prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis. Comput. Biol. Med. 142, 105239 (2022)

    Article  Google Scholar 

  25. Yan, Y., Zhu, J., Duda, M., Solarz, E., Sripada, C., Koutra, D.: Groupinn: Grouping-based interpretable neural network for classification of limited, noisy brain data. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 772–782 (2019)

    Google Scholar 

  26. Zhang, Z., et al.: Hierarchical graph pooling with structure learning. arXiv preprint arXiv:1911.05954 (2019)

  27. Zhu, M., Wang, X., Shi, C., Ji, H., Cui, P.: Interpreting and unifying graph neural networks with an optimization framework. In: Proceedings of the Web Conference 2021, pp. 1215–1226 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimei Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, A., Zhang, X., Lv, G., Zhao, G., Zhai, Y. (2024). Autism Spectrum Disorder Diagnosis Using Graph Neural Network Based on Graph Pooling and Self-adjust Filter. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics