Abstract
Breast cancer stands as the foremost cause of cancer-related deaths among women worldwide. The prompt and accurate detection of breast lesions through ultrasound videos plays a crucial role in early diagnosis. However, existing ultrasound video lesion detectors often rely on multiple adjacent frames or non-local temporal fusion strategies to enhance performance, consequently compromising their detection speed. This study presents a simple yet effective network called the Space Time Feature Aggregation Network (STA-Net). Its main purpose is to efficiently identify lesions in ultrasound videos. By leveraging a temporally shift-based space-time aggregation module, STA-Net achieves impressive real-time processing speeds of 54 frames per second on a single GeForce RTX 3090 GPU. Furthermore, it maintains a remarkable accuracy level of 38.7 mean average precision (mAP). Through extensive experimentation on the BUV dataset, our network surpasses existing state-of-the-art methods both quantitatively and qualitatively. These promising results solidify the effectiveness and superiority of our proposed STA-Net in ultrasound video lesion detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bernal, J., SĆ”nchez, F.J., FernĆ”ndez-Esparrach, G., Gil, D., RodrĆguez, C., VilariƱo, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99ā111 (2015)
Bernal, J., SĆ”nchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166ā3182 (2012)
Cui, Y.: Feature aggregated queries for transformer-based video object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6365ā6376, June 2023
Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4ā5), 198ā211 (2007)
Drukker, K., Giger, M.L., Horsch, K., Kupinski, M.A., Vyborny, C.J., Mendelson, E.B.: Computerized lesion detection on breast ultrasound. Med. Phys. 29(7), 1438ā1446 (2002)
Gong, T., et al.: Temporal ROI align for video object recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1442ā1450 (2021)
Huang, X., Lin, Z., Huang, S., Wang, F.L., Chan, M.T., Wang, L.: Contrastive learning-guided multi-meta attention network for breast ultrasound video diagnosis. Front. Oncol. 12, 952457 (2022)
Ji, G.P., et al.: Progressively normalized self-attention network for video polyp segmentation. In: Cattin, P.C., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 142ā152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_14
Li, J., et al.: Rethinking breast lesion segmentation in ultrasound: a new video dataset and a baseline network. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Proceedings of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022, Part IV, 18ā22 September 2022, Singapore, pp. 391ā400. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_38
Li, X., et al.: Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. arXiv preprint arXiv:2006.04388 (2020)
Lin, T.Y., Goyal, P., Girshick, R., He, K., DollĆ”r, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980ā2988 (2017)
Lin, Z., Lin, J., Zhu, L., Fu, H., Qin, J., Wang, L.: A new dataset and a baseline model for breast lesion detection in ultrasound videos. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022, , vol. 13433, pp. 614ā623. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_59
Montavon, G., Orr, G., MĆ¼ller, K.R.: Neural Networks: Tricks of the Trade, 2nd edn., January 2012. https://doi.org/10.1007/978-3-642-35289-8
Ning, Z., Zhong, S., Feng, Q., Chen, W., Zhang, Y.: SMU-Net: saliency-guided morphology-aware u-net for breast lesion segmentation in ultrasound image. IEEE Trans. Med. Imaging 41(2), 476ā490 (2021)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., dā AlchĆ©-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024ā8035. Curran Associates, Inc. (2019). https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)
Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630ā644 (2015)
Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464ā7475 (2023)
Wu, H., Chen, Y., Wang, N., Zhang, Z.: Sequence level semantics aggregation for video object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9216ā9224 (2019)
Xue, C., et al.: Global guidance network for breast lesion segmentation in ultrasound images. Med. Image Anal. 70, 101989 (2021)
Yang, Z., Gong, X., Guo, Y., Liu, W.: A temporal sequence dual-branch network for classifying hybrid ultrasound data of breast cancer. IEEE Access 8, 82688ā82699 (2020)
Yap, M.H., et al.: Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 22(4), 1218ā1226 (2017)
Zhang, E., Seiler, S., Chen, M., Lu, W., Gu, X.: BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis. Phys. Med. Biol. 65(12), 125005 (2020)
Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: VarifocalNet: an IoU-aware dense object detector. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8510ā8519 (2021)
Zhao, G., Kong, D., Xu, X., Hu, S., Li, Z., Tian, J.: Deep learning-based classification of breast lesions using dynamic ultrasound video. Eur. J. Radiol. 165, 110885 (2023)
Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation for video object detection. In: IEEE International Conference on Computer Vision (ICCV), pp. 408ā417 (2017)
Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2349ā2358 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Dai, Q., Lin, J., Li, W., Wang, L. (2024). A Real-Time Network for Fast Breast Lesion Detection in Ultrasound Videos. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_4
Download citation
DOI: https://doi.org/10.1007/978-981-99-8558-6_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8557-9
Online ISBN: 978-981-99-8558-6
eBook Packages: Computer ScienceComputer Science (R0)