Skip to main content

A Real-Time Network for Fast Breast Lesion Detection in Ultrasound Videos

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

  • 333 Accesses

Abstract

Breast cancer stands as the foremost cause of cancer-related deaths among women worldwide. The prompt and accurate detection of breast lesions through ultrasound videos plays a crucial role in early diagnosis. However, existing ultrasound video lesion detectors often rely on multiple adjacent frames or non-local temporal fusion strategies to enhance performance, consequently compromising their detection speed. This study presents a simple yet effective network called the Space Time Feature Aggregation Network (STA-Net). Its main purpose is to efficiently identify lesions in ultrasound videos. By leveraging a temporally shift-based space-time aggregation module, STA-Net achieves impressive real-time processing speeds of 54 frames per second on a single GeForce RTX 3090 GPU. Furthermore, it maintains a remarkable accuracy level of 38.7 mean average precision (mAP). Through extensive experimentation on the BUV dataset, our network surpasses existing state-of-the-art methods both quantitatively and qualitatively. These promising results solidify the effectiveness and superiority of our proposed STA-Net in ultrasound video lesion detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

    Google Scholar 

  2. Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)

    Article  Google Scholar 

  3. Cui, Y.: Feature aggregated queries for transformer-based video object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6365–6376, June 2023

    Google Scholar 

  4. Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4–5), 198–211 (2007)

    Article  Google Scholar 

  5. Drukker, K., Giger, M.L., Horsch, K., Kupinski, M.A., Vyborny, C.J., Mendelson, E.B.: Computerized lesion detection on breast ultrasound. Med. Phys. 29(7), 1438–1446 (2002)

    Article  Google Scholar 

  6. Gong, T., et al.: Temporal ROI align for video object recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1442–1450 (2021)

    Google Scholar 

  7. Huang, X., Lin, Z., Huang, S., Wang, F.L., Chan, M.T., Wang, L.: Contrastive learning-guided multi-meta attention network for breast ultrasound video diagnosis. Front. Oncol. 12, 952457 (2022)

    Article  Google Scholar 

  8. Ji, G.P., et al.: Progressively normalized self-attention network for video polyp segmentation. In: Cattin, P.C., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 142–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_14

    Chapter  Google Scholar 

  9. Li, J., et al.: Rethinking breast lesion segmentation in ultrasound: a new video dataset and a baseline network. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Proceedings of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022, Part IV, 18–22 September 2022, Singapore, pp. 391–400. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_38

  10. Li, X., et al.: Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. arXiv preprint arXiv:2006.04388 (2020)

  11. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  12. Lin, Z., Lin, J., Zhu, L., Fu, H., Qin, J., Wang, L.: A new dataset and a baseline model for breast lesion detection in ultrasound videos. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022, , vol. 13433, pp. 614–623. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_59

  13. Montavon, G., Orr, G., Müller, K.R.: Neural Networks: Tricks of the Trade, 2nd edn., January 2012. https://doi.org/10.1007/978-3-642-35289-8

  14. Ning, Z., Zhong, S., Feng, Q., Chen, W., Zhang, Y.: SMU-Net: saliency-guided morphology-aware u-net for breast lesion segmentation in ultrasound image. IEEE Trans. Med. Imaging 41(2), 476–490 (2021)

    Article  Google Scholar 

  15. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)

  17. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2015)

    Article  Google Scholar 

  18. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023)

    Google Scholar 

  19. Wu, H., Chen, Y., Wang, N., Zhang, Z.: Sequence level semantics aggregation for video object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9216–9224 (2019)

    Google Scholar 

  20. Xue, C., et al.: Global guidance network for breast lesion segmentation in ultrasound images. Med. Image Anal. 70, 101989 (2021)

    Article  Google Scholar 

  21. Yang, Z., Gong, X., Guo, Y., Liu, W.: A temporal sequence dual-branch network for classifying hybrid ultrasound data of breast cancer. IEEE Access 8, 82688–82699 (2020)

    Article  Google Scholar 

  22. Yap, M.H., et al.: Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 22(4), 1218–1226 (2017)

    Article  Google Scholar 

  23. Zhang, E., Seiler, S., Chen, M., Lu, W., Gu, X.: BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis. Phys. Med. Biol. 65(12), 125005 (2020)

    Article  Google Scholar 

  24. Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: VarifocalNet: an IoU-aware dense object detector. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8510–8519 (2021)

    Google Scholar 

  25. Zhao, G., Kong, D., Xu, X., Hu, S., Li, Z., Tian, J.: Deep learning-based classification of breast lesions using dynamic ultrasound video. Eur. J. Radiol. 165, 110885 (2023)

    Article  Google Scholar 

  26. Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation for video object detection. In: IEEE International Conference on Computer Vision (ICCV), pp. 408–417 (2017)

    Google Scholar 

  27. Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2349–2358 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liansheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, Q., Lin, J., Li, W., Wang, L. (2024). A Real-Time Network for Fast Breast Lesion Detection in Ultrasound Videos. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics